Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T12:55:25.070Z Has data issue: false hasContentIssue false

Spectroscopic Studies of Liquid Crystals Confined in Sol-gel Matrices

Published online by Cambridge University Press:  21 March 2011

Carlos Fehr
Affiliation:
Groupe de dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, Montpellier, France
Philippe Dieudonne
Affiliation:
Groupe de dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, Montpellier, France
Christophe Goze Bac
Affiliation:
Groupe de dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, Montpellier, France
Philippe Gaveau
Affiliation:
Groupe de dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, Montpellier, France
Jean-Louis Sauvajol
Affiliation:
Groupe de dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, Montpellier, France
Eric Anglaret
Affiliation:
Groupe de dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, Montpellier, France
Get access

Abstract

Thermotropic liquid crystals (5CB and 8CB) were confined in silica porous matrices (xerogels and xero-aerogels) with different pore sizes. The structure and dynamics of confined liquid crystals were studied by Raman spectroscopy and Nuclear Magnetic Resonance. In Raman, the frequency of the CN stretching peak is a good probe of the smectic_A-crystal phase transition. The CN peak is observed to split upon quenching. This suggests a coexistence of crystalline and supercooled liquid phases for confined LC which was not observed in the bulk. In NMR, strong differences in both chemical shifts and linewidths are observed in confinement with respect to the bulk. We present a model which analyses the changes in the spectra in terms of changes of the order parameter and molecular dynamics for the confined LC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Crawford, G. and Zumer, S., editors. Liquid Crystals in complex Geometries. (Taylor & Francis, 1998).Google Scholar
2. Shao, Y. and Zerda, T.. Phase transitions of liquid crystals PAA in confined geometries. Journal of Physical Chemistry B, 102, 33873394, (1998).Google Scholar
3. Crawford, G., Stannarius, R., and Doane, J.. Surface-induced orientational order in the isotropic phase of a liquid-crystal material. Physical Review A, 44(4), 25582569, (1991).Google Scholar
4. Cramer, C., Cramer, T., Kremer, F., and Stannarius, R.. Measurement of orientational order and mobility of a nematic liquid crystal in random nanometer confinement. Journal of Chemical Physics, 106 (9), 37303783, (1997).Google Scholar
5. Dieudonne, P., Calas, S., Fehr, C., Primera, J., Woignier, T., Delord, P., and Phalippou, J.. Monolithic porous glasses with controlled mesopore size. Journal de Physique, 10, 7378, (2000).Google Scholar
6. Fehr, C.et al. to be published. (2001).Google Scholar
5. Perrot, M., DeZen, J-M., and Rothschild, W.. Mid-and low-frequency raman spectra of stable and metastable crystalline states of the 4-textitn-alkyl-4'-cyanobiphenyl(n=9,11,12) liquid crystals. Journal of Chemical Physics, 23 (11), 633636, (1992).Google Scholar