Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T08:50:10.163Z Has data issue: false hasContentIssue false

Spatially-Resolved Photoluminescence and Raman Study on the GaN/Substrate Interface

Published online by Cambridge University Press:  21 February 2011

H Siegle
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
P. Thurian
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
L. Eckey
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
A. Hoffmann
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
C. Thomsen
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
B K. Meyer
Affiliation:
Technische Universität München, Physik-Department El6, 87547 Garching, Germany
T. Detchprohm
Affiliation:
Nagoya University, Nagoya, Japan
K. Hiramatsu
Affiliation:
Nagoya University, Nagoya, Japan
H. Amano
Affiliation:
Meijo University, Nagoya, Japan
I. Akasaki
Affiliation:
Meijo University, Nagoya, Japan
Get access

Abstract

We performed spatially-resolved photoluminescence and Raman experiments on the substrate interface region of wurtzite GaN layers. We found that the broad ”yellow” photoluminescence band is strong only near the interface. Our investigations reveal that both the substrate interface and a region of structural reorientation of the layer near the interface act as source of the photoluminescence. The Raman-scattering experiments show that at least a portion of the GaN layer near the substrate interface is oriented in such a way that the c-axis of the layer is parallel to the substrate interface. At a distance about 30 µm away from the interface the layer reorients by turning the c-axis by 90° into a direction perpendicular to the substrate interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Davis, R. F., Physica 185B, 1 (1993); S. Strite and H. Morkoç, J. Vac. Sci. Technol. B10, 1237 (1992)Google Scholar
2 Pankove, J. I. and Hutchby, J. A., J. Appl. Phys. 47, 5387 (1976); T. Ogino and M. Aoki, Jap. J. Appl. Phys. 19, 2395 (1980)Google Scholar
3 Hofmann, D. M., Kovalev, D., Steude, G., Meyer, B. K., Hoffmann, A., Eckey, L., Detchprom, T., Amano, A., and Akasaki, I., Phys. Rev. B, in printGoogle Scholar
4 Glaser, E. R., Kennedy, T. A., Crookham, H. C., Freitas, J. A. jr., Asif Khan, M., Olson, D. T., and Kuznia, J. N., Appl. Phys. Lett. 63, 2673 (1993)Google Scholar
5 Perlin, P., Suski, T., Teisseyre, H., Leszczynski, M., Grzegory, I., Jun, J., Porowski, S., Boguslawski, P., Bernholc, J., Chervin, J. C., Polian, A., and Moustakas, T., Phys. Rev. Lett. 75, 296 (1995)Google Scholar
6 James, J. R., Nicholls, J. E., Cavenett, B. C., Davies, J. J., Dunstan, D. J., Solid State Commun. 17, 969 (1975)Google Scholar
7 For a survey of Raman spectra on sapphire see for example: Porto, S. P. S. and Krishnan, R. S., J. Chem. Phys. 47, 1009 (1967)Google Scholar
8 Kozawa, T., Kachi, T., Kano, H., Nagase, H., Koide, N., and Manabe, K., J. Appl. Phys. 77, 4389 (1995)Google Scholar
9 Arguello, C. A., Rousseau, D. L., and Porto, S. P. S., Phys. Rev. 181, 1351 (1969)Google Scholar
10 Siegle, H., Eckey, L., Hoffmann, A., Thomsen, C., Meyer, B. K., Schikora, D., Hankeln, M., Lischka, K., Solid State Commun. 96, 943 (1995)Google Scholar