Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T10:47:07.577Z Has data issue: false hasContentIssue false

Spatially Resolved MicroDiffraction Analysis of the Plastic Deformation in the Shock Recovered Al Single Crystaltal

Published online by Cambridge University Press:  01 February 2011

Rozaliya Barabash
Affiliation:
barabashr@ornl.gov, Oak Ridge National Laboratory, Materails Science and technology, One bethel Valley Road, Oak Ridge, TN, 37831-6118, United States
G. E. Ice
Affiliation:
icege@ornl.gov, Oak Ridge National Laboratory, Materails Science and technology, One bethel Valley Road, Oak Ridge, TN, 37831, United States
W. Liu
Affiliation:
wliu@anl.gov, Advanced Photon Source, Argonne, IL, 60439, United States
J. Belak
Affiliation:
belak1@llnl.gov, University of California, Lawrence Livermore National Laboratory, Levermore, CA, 94551, United States
M. Kumar
Affiliation:
kumsr@llnl.gov, University of California, Lawrence Livermore National Laboratory, Levermore, CA, 94551, United States
Get access

Abstract

A spatially resolved diffraction method with a sub micrometer-diameter beam and 3D differential aperture technique together with MD simulations, SEM and OIM analysis are applied to understand the arrangements of voids, geometrically necessary dislocations and strain gradient distribution in samples of Al (123) single crystal shocked to incipient spallation fracture. We describe how geometrically necessary dislocations and effective strain gradient alter white beam Laue patterns of the shocked materials. We show how to quantitatively determine the orientation and density of geometrically necessary dislocations in the shock recovered Al samples being initially oriented for single slip.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lipkin, J. and Asay, J.R., J Appl. Phys 48 1, 182189 (1977).Google Scholar
2 Loveridge-Smith, A., Allen, A., Belak, J., Boehly, T., Hauer, A., Holian, B., Kalantar, D., Kyrala, G., Lee, R.W., Lomdahl, P., Meyers, M.A., Paisley, D., Pollaine, S., Remington, B., Swift, D.C., Weber, S., and Wark, J.S., Physical Review Letters, 86, 11, 23492352 (2001).Google Scholar
3 Kalantar, D.H., Belak, J., Bringa, E., Budil, K., Caturla, M., Colvin, J., Kumar, M., Lorenz, K.T., Rudd, R. E., and Stolken, J., Physics of Plasmas, 10, 5, 15691576 (2003).Google Scholar
4 Kalantar, D.H., Bringa, E., Caturla, M., Colvin, J., Lorenz, K.T., Kumar, M., and Stöölken, J., Review Scientific Instruments, 74, 3, 19291934 (2003).Google Scholar
5 Seppälä, E.T., Belak, J., and Rudd, R.E., Physical Review B, 71, 64112 (2005); and references therein.Google Scholar
6 Stevens, A.L., Davison, L. and Warren, W.E., J. Appl. Phys. 43, 4922 (1972).Google Scholar
7 Larson, B.C., Yang, Wenge, Ice, G.E., Budai, J.D., Tischler, J.Z., Nature, 415, 887890 (2002).Google Scholar
8 Barabash, R., Ice, G.E., Larson, B.C., Pharr, G.M., Chung, K.S., Yang, W., Appl.Phys.Lett. 79, 749 (2001).Google Scholar
9 Barabash, R., Ice, G.E., Walker, F., J. Appl. Physics, 93, 3, 14571464 (2003).Google Scholar
10 Barabash, R.I., Ice, G.E., Microdiffraction Analysis of Hierarchical Dislocation Organization. In: Encyclopedia of Materials: Science and Technology Updates, Elsevier, Oxford. 118 (2005).Google Scholar
11 Mughrabi, H., Acta metall. 31, 9, 13671379 (1983).Google Scholar
12 Hansen, N., Metallurgical and materials transactions A 32A, 29172935 (2001).Google Scholar
13 Hughes, D.A and Hansen, N, Acta Mater. 48, 29853004 (2000).Google Scholar
14 Hughes, D.A., Liu, Q., Chrzan, D.C. and Hansen, N., Acta Mater. 45, 105112 Google Scholar
15 Nye, J.F. (1953) Acta Metallurgica, 1, 153162 (1997).Google Scholar
16 Gao, H., Huang, Y., Nix, W. D. and Hutchinson, J. W., Journal of the Mechanics and Physics of Solids, 47, 12391263 (1999).Google Scholar