Skip to main content Accessibility help
×
Home

Some Organic-Inorganic Composites, Illustrative Simulations on Elastomer Reinforcement, and an Overview of Symposium Contributions

  • J. E. Mark (a1)

Abstract

This review first describes organic-inorganic composites which have been prepared using techniques similar to those employed in the new sol-gel approach to ceramics. Organometallics such as silicates, titanates, and aluminates are hydrolyzed in the presence of polymer chains (for example polysiloxanes and polyamides) that typically contain hydroxyl groups. The functional groups are used to bond the polymer chains onto the silica, titania, or alumina being formed in the hydrolysis, thus forming novel organic-inorganic composites. When the polymer chains are present in excess, they constitute the continuous phase, with the ceramic-type material appearing as reinforcing particles. When present in smaller amounts, the polymer is dispersed in the continuous ceramic phase, to give a polymer-modified ceramic. Under some conditions,bicontinuous systems are obtained.

The second part addresses one of the major unsolved problems in the area of rubberlike elasticity, specifically a molecular understanding of the mechanisms by which the mechanical properties of elastomers are improved by the incorporation of particulate fillers such as carbon black or silica. Theoretical work on the reinforcement thus obtained is illustrated by some Monte Carlo calculations on one aspect of the problem, namely excluded volume effects of the filler particles on the network chain configurations. The resulting end-to-end distributions are then used in standard molecular models to generate stress-strain isotherms, which document the nature of the reinforcement obtained.

The final part provides an overview of the specific papers presented at this symposium, and attempts to place them into the broad general context of “Filled and Nanocomposite Polymer Materials”.

Copyright

References

Hide All
1. Warrick, E. L., Pierce, O. R., Polmanteer, K. E. and Saam, J. C., Rubber Chem. Technol., 52, 437 (1979).
2. Medalia, A. I. and Kraus, G., in Science and Technology of Rubber Mark, J. E., Erman, B., and Eirich, F. R., Eds. (Academic, San Diego, 1994) p. 387.
3. Mark, J. E., Lee, C. Y.-C. and Bianconi, P. A., Eds., Hybrid Organic-Inorganic Composites, vol. 585 (American Chemical Society, Washington, 1995).
4. Schmidt, H. K., Macromol. Symp., 101, 333 (1996).
5. Calvert, P., in Biomimetic Materials Chemistry Mann, S., Eds. (VCH Publishers, New York, 1996) p. 315.
6. Giannelis, E. P., in Biomimetic Materials Chemistry Mann, S., Eds. (VCH Publishers, New York, 1996) p. 337.
7. Wen, J. and Wilkes, G. L., in Polymeric Materials Encyclopedia: Synthesis, Properties, and Applications J. C. Salamone, Eds. (CRC Press, Boca Raton, 1996) p. 4782.
8. Mark, J. E., Hetero. Chem. Rev., 3, 307 (1996).
9. Mark, J. E., Polym. Eng. Sci., 36, 2905 (1996).
10. Mark, J. E., in Molecular Catenanes, Rotaxanes and Knots Sauvage, J.-P., and Dietrich-Buchecker, C., Eds. (Wiley-VCH, Weinheim, 1999) p. 223.
11. Mark, J. E., in Encyclopedia of Materials: Science and Technology Buschow, K. H. J.et al., Eds. (Elsevier Science, Amsterdam, 2001).
12. Cheetham, A. K., Brinker, C. J., Mecartney, M. L. and Sanchez, C., Eds., Better Ceramics Through Chemistry VI, vol. 346 (Materials Research Society, Pittsburgh, 1994).
13. Clarson, S. J. and Mark, J. E., in Siloxane Polymers Clarson, S. J., and Semlyen, J. A., Eds. (Prentice Hall, Englewood Cliffs, 1993) p. 616.
14. Mark, J. E., J. Appl. Polym. Sci., Appl. Polym. Symp., 50, 273 (1992).
15. Mark, J. E., Eisenberg, A., Graessley, W. W., Mandelkern, L., Samulski, E. T., Koenig, J. L. and Wignall, G. D., Physical Properties of Polymers (American Chemical Society, Washington, DC, 1993).
16. Erman, B. and Mark, J. E., Structures and Properties of Rubberlike Networks (Oxford University Press, New York, 1997).
17. Mark, J. E., CHEMTECH, 19, 230 (1989).
18. Xu, P., Wang, S. and Mark, J. E., in Better Ceramics Through Chemistry IV Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R., Eds. (Materials Research Society, Pittsburgh, 1990), vol. 180, p. 445.
19. Ulibarri, T. A., Beaucage, G., Schaefer, D. W., Olivier, B. J. and Assink, R. A., in Submicron Multiphase Materials Baney, R. H., Gilliom, L. R., Hirano, S.-I., and Schmidt, H. K., Eds. (Materials Research Society, Pittsburgh, PA, 1992), vol. 274, p. 85.
20. Breiner, J. M. and Mark, J. E., Polymer, 39, 5483 (1998).
21. Mark, J. E., Ning, Y.-P., Jiang, C.-Y., Tang, M.-Y. and Roth, W. C., Polymer, 26, 2069 (1985).
22. Landry, M. R., Coltrain, B. K., Landry, C. J. T. and O'Reilly, J. M., J. Polym. Sci., Polym. Phys. Ed., 33, 637 (1995).
23. McCarthy, D. W., Mark, J. E. and Schaefer, D. W., J. Polym. Sci., Polym. Phys. Ed., 36, 1167 (1998).
24. Breiner, J. M., Mark, J. E. and Beaucage, G., J. Polym. Sci., Polym Phys Edn., 37, 1421 (1999).
25. Mark, J. E., in Organic/Inorganic Hybrid Materials – 2000 Laine, R. M., Sanchez, C., Giannelis, E., and Brinker, C. J., Eds. (Materials Research Society, Warrendale, PA, 2000), vol. 628,.
26. Mark, J. E. and Erman, B., Rubberlike Elasticity. A Molecular Primer (Wiley-Interscience, New York, 1988).
27. Premachandra, J., Kumudinie, C., Mark, J. E., Tang, T. D. and Arnold, F. E., J. Macromol. Sci., Pure Appl. Chem, A36, 73 (1999).
28. Wang, S., Xu, P. and Mark, J. E., Rubber Chem. Technol., 64, 746 (1991).
29. Mark, J. E., Wang, S., Xu, P. and Wen, J., in Submicron Multiphase Materials Baney, R. H., Gilliom, L. R., Hirano, S.-I., and Schmidt, H. K., Eds. (Materials Research Society, Pittsburgh, PA, 1992), vol. 274, p. 77.
30. Kraus, G., Eds., Reinforcement of Elastomers (Interscience, New York, 1965).
31. Mark, J. E. and Sun, C.-C., Polym. Bulletin, 18, 259 (1987).
32. Schmidt, H. and Wolter, H., J. Non-Cryst. Solids, 121, 428 (1990).
33. Nass, R., Arpac, E., Glaubitt, W. and Schmidt, H., J. Non-Cryst. Solids, 121, 370 (1990).
34. Wang, B. and Wilkes, G. L., J. Polym. Sci., Polym. Chem. Ed., 29, 905 (1991).
35. Wilkes, G. L., Huang, H.-H. and Glaser, R. H., in Silicon-Based Polymer Science Zeigler, J. M., and Fearon, F. W. G., Eds. (American Chemical Society, Washington, DC, 1990), vol. 224, p. 207.
36. Brennan, A. B., Wang, B., Rodrigues, D. E. and Wilkes, G. L., J. Inorg. Organomet. Polym., 1, 167 (1991).
37. Sobon, C. A., Bowen, H. K., Broad, A. and Calvert, P. D., J. Mat. Sci. Lett., 6, 901 (1987).
38. Calvert, P. and Mann, S., J. Mat. Sci., 23, 3801 (1988).
39. Azoz, A., Calvert, P. D., Kadim, M., McCaffery, A. J. and Seddon, K. R., Nature, 344, 49 (1990).
40. Doyle, W. F. and Uhlmann, D. R., in Ultrastructure Processing of Advanced Ceramics Mackenzie, J. D., and Ulrich, D. R., Eds. (Wiley-Interscience, New York, 1988) p. 795.
41. Doyle, W. F., Fabes, B. D., Root, J. C., Simmons, K. D., Chiang, Y. M. and Uhlmann, D. R., in Ultrastructure Processing of Advanced Ceramics Mackenzie, J. D., and Ulrich, D. R., Eds. (Wiley-Interscience, New York, 1988) p. 953.
42. Boulton, J. M., Fox, H. H., Neilson, G. F. and Uhlmann, D. R., in Better Ceramics Through Chemistry IV Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R., Eds. (Materials Research Society, Pittsburgh, 1990), vol. 180, p. 773.
43. Ning, Y. P., Zhao, M. X. and Mark, J. E., in Frontiers of Polymer Research Prasad, P. N., and Nigam, J. K., Eds. (Plenum, New York, 1991) p. 479.
44. Zhao, M. X., Ning, Y. P. and Mark, J. E., in Advanced Composite Materials Sacks, M. D., Eds. (American Ceramics Society, Westerville, OH, 1993) p. 891.
45. Novak, B. M., Adv. Mats., 5, 422 (1993).
46. Uhlmann, D. R. and Ulrich, D. R., Eds., Ultrastructure Processing of Advanced Materials (Wiley, New York, 1992).
47. Wen, J. and Mark, J. E., Polym. J., 27, 492 (1995).
48. Kloczkowski, A., Sharaf, M. A. and Mark, J. E., Comput. Polym. Sci., 3, 39 (1993).
49. Kloczkowski, A., Sharaf, M. A. and Mark, J. E., Chem. Eng. Sci., 49, 2889 (1994).
50. Sharaf, M. A., Kloczkowski, A. and Mark, J. E., Comput. Polym. Sci., 4, 29 (1994).
51. Yuan, Q. W., Kloczkowski, A., Mark, J. E. and Sharaf, M. A., J. Polym. Sci., Polym. Phys. Ed., 34, 1674 (1996).
52. Mark, J. E. and Curro, J. G., J. Chem. Phys., 79, 5705 (1983).
53. Treloar, L. R. G., The Physics of Rubber Elasticity (Clarendon Press, Oxford, 1975).
54. Sunkara, H. B., Jethmalani, J. M. and Ford, W. T., Chem. Mater., 6, 362 (1994).
55. Sunkara, H. B., Jethmalani, J. M. and Ford, W. T., in Hybrid Organic-Inorganic Composites Mark, J. E., Lee, C. Y.-C., and Bianconi, P. A., Eds. (American Chemical Society, Washington, 1995), vol. 585, p. 181.

Related content

Powered by UNSILO

Some Organic-Inorganic Composites, Illustrative Simulations on Elastomer Reinforcement, and an Overview of Symposium Contributions

  • J. E. Mark (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.