Skip to main content Accessibility help
×
Home

Some Computer Simulations of Semiconductor Thin Film Growth and Strain Relaxation in a Unified Atomistic and Kinetic Model

  • A. Madhukar (a1), W. Yu (a1), R. Viswanathan (a1) and P. Chen (a1)

Abstract

An overview is provided of an evolving atomistic and kinetic model of semiconductor growth that unifies the main features of strain relaxation in low and high lattice misfit heteroepitaxy. The model reveals a kinetic pathway for dislocation formation during growth with little or no energy cost at low misfits, thus providing a way out of the longstanding dilemma of too high dislocation nucleation energies predicted by classical theories of the equilibrium behaviour of a fixed number of particles at low misfits. The essential kinetic processes underlying the model are identified on the basis of comparison of the predictions of kinetic Monte-Carlo simulations of growth with real-time or in-situ data obtained in such experiments as reflection high-energy electron diffraction (RHEED) and scanning probe microscopy (SPM). Relative significance of these atomistic kinetic processes is shown to naturally lead to strain relaxation via defect initiation at low misfits while maintaining smooth surface morphology or at high misfits change to 3-dimensional morphology while initially maintaining coherence. The potential role of steps in providing sources for defect formation is examined through molecular dynamics simulations of Ge overlayers on Si (001) stepped surfaces.

Copyright

References

Hide All
1. See, for example, Madhukar, A., Thin Solid Films 231, p. 8 (1993).
2. See, for example, Strained Layer Superlattices, edited by T., Pearsall, Academic Press, New York, Vols. I and 2 (1990).
3. See, for example, Epitaxical Growth, edited by J.W., Matthews, Academic Press, New York, Vols. A and B (1975).
4. Srolovitz, D.J., Acta Metall. 37, p. 621 (1989).
5. Ghaisas, S.V. and Madhukar, A., J. Vac. Sc. Technol. B 3, p. 540 (1985); A. Madhukar and S.V. Ghaisas, Phys. Rev. Lett. 56, p. 1066 (1986).
6. Arthur, J.R., Surf. Sc. 43, p. 449 (1974); J. Appl. Phys. 37, p. 3057 (1966); 39, p. 4032 (1968).
7. Foxon, C.T. and Joyce, B.A., Surf. Sc. 50, p. 434 (1975); 64, p. 293 (1977).
8. For a review of the CDRI model based results until 1987, see Madhukar, A. and Ghaisas, S.V., CRC Critical Review in Solid State and Materials Sciences 14, p. 1 (1988).
9. Ghaisas, S.V. and Madhukar, A., Proc. Soc. Photo-Opt. Instrument. Engr. (SPIE) 944, p. 16 (1988); S.V. Ghaisas and A. Madhukar, J. Vac. Sc. Technol. B7, p. 264 (1989).
10. Ghaisas, S.V. and Madhukar, A., J. Appl. Phys. 65, p. 1888 (1989).
11. Ogale, S.B. and Madhukar, A., App. Phys. Lett. 52, p. 723 (1988).
12. Madhukar, A. and Ghaisas, S.V., Appl. Phys. Lett. 47, p. 247 (1985).
13. Lewis, B.F., Lee, T.C., Grunthaner, F.J., Madhukar, A., Fernandez, R. and Maserjian, J., J. Vac. Sc. Technol. B 2, p. 419 (1984).
14. Evans, K.R., Stutz, C.E., Lorance, D.K., and Jones, R.L., J. Vac. Sc. Technol. B 7, p. 259 (1989).
15. Grandjean, N., Massies, J., and Etgens, V.H., Phys. Rev. Lett. 69, p. 796 (1992).
16. Guha, S., Madhukar, A., and Rajkumar, K.C., Appl. Phys. Let. 57, p. 2110 (1990); S. Guha, Ph.D. Dissertation, University of Southern California, 1991.
17. LeGoues, F., Reuter, M.C., Tersoff, J., Hammar, M., and Tromp, R.M., Phys. Rev. Lett. 73, p.3447 (1994).
18. Kobayashi, N. et al., To be published.
19. , Djafari-Rouhani et al., Pre-Print (1990).
20. Perovic, D.D. and Houghton, D.C., MRS Proc., 263, p. 391 (1992).
21. Roland, C. and Gilmer, G., Phys. Rev.B 47, p. 16286 (1993).

Related content

Powered by UNSILO

Some Computer Simulations of Semiconductor Thin Film Growth and Strain Relaxation in a Unified Atomistic and Kinetic Model

  • A. Madhukar (a1), W. Yu (a1), R. Viswanathan (a1) and P. Chen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.