Skip to main content Accessibility help
×
Home

Solution Flow System for Hydrothermal-Electrochemical Synthesis: New Opportunities for Multilayered Oxide Films

  • W. Suchanek (a1), T. Watanabe (a1), B. Sakurai (a1) and M. Yoshimura (a1)

Abstract

A solution flow system for hydrothermal-electrochemical synthesis has been constructed in our laboratory. This equipment can operate at 20°-200°C, under the pressure of 1-50 atm., at flow rate of 1-50 cm3/min. Applicability of the flow system for low-temperature, hydrothermalelectrochemical synthesis of single-layer and multilayered thin films has been demonstrated using the BaTiO3-SrTiO3 system as an example. Single phase thin films as well as double layers have been deposited at 150°C, current density of 1 mA/cm2, and flow rates of 1-50 cm3/min. The flow rate is an important parameter allowing additional control of the films' morphology by affecting the growth rate. The multilayers can be prepared in only one experiment by simply changing the flowing solution. Processing using the solution flow cell may serve as an inexpensive and environmentally friendly way of fabricating any multilayered thin films, including magneto-optic films.

Copyright

References

Hide All
1. Ohring, M., The Materials Science of Thin Films, Academic Press, 1992.
2. Klein, L. (editor), Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, Noyes Publ., 1988.
3. Klein, L. (editor), Sol-Gel Optics. Processing and Applications, Kluwer Academic Publishers, Boston/Dordrecht/London, 1994.
4. Yoshimura, M. and Suchanek, W., Solid State Ionics, 98, 197 (1997).10.1016/S0167-2738(97)00103-3
5. Yoshimura, M., J. Mater. Res., 13, 796 (1998).
6. Yoshimura, M., Suchanek, W., Watanabe, T., Sakurai, B. and Abe, M., J. Mater. Res., 13, 875 (1998).
7. Porter, J. M., Pohl, D. C. and Rimstid, J. D. in Hydrothermal Experimental Techniques, edited by Ulmer, G. C. and Barnes, H. L. (John Willey & Sons, New York, 1987), pp. 240–60.
8. Abe, M., Tamaura, Y., Goto, Y., Kitamura, N. and Gomi, M., J. Appl. Phys., 61, 3211 (1987).10.1063/1.338904
9. see the introductory section of ref. [6].
10. Lencka, M. and Riman, R. E., Ferroelectrics, 151, 159 (1994).
11. Seewald, J. S. and Seyfried, W. E. Jr, Geochimica et Cosmochimica Acta, 55, 659 (1991).
12. Elwell, D. and Scheel, H. J., Crystal Growth from High-Temperature Solutions, Academic Press, 1975.
13. Nesbitt, H. W., Bancroft, G. M., Fyfe, W. S., Karkhanis, S. N., Nishijima, A. and Shin, S., Nature, 289, 358 (1981).10.1038/289358a0
14. for list of References see ref. [4] and [5]
15. Koinuma, M., Hirae, T. and Matsumoto, Y., J. Mater. Res., 13, 837 (1998).
16. Kitamoto, Y., Kantake, S. and Abe, M., J. Magnet. Soc. Jpn., 21, 81 (1997).10.3379/jmsjmag.21.S2_81
17. Abe, M., Kitamoto, Y., Matsumoto, K., Zhang, M. and Li, P., IEEE Trans. Magn., 33, 3649 (1997).10.1109/20.619526
18. McKinney, B. L. and Faust, C. L., J. Electrochem. Soc., 124, 379C (1977).
19. Yokoyama, N., Muto, S., Imamura, K., Takatsu, M., Mori, T., Sugiyama, Y., Sakuma, Y., Nakao, H. and Adachihara, T., Solid-State Electronics, 40, 505 (1996).
20. Fendler, J. H. and Meldrum, F. C., Adv. Mater., 7, 607 (1995).10.1002/adma.19950070703
21. Lange, F. F., Science, 273, 903 (1996).
22. Ross, C. A., Annu. Rev. Mater. Sci., 24, 159 (1994).
23. Abe, M., Miki, T. and Kitamoto, Y., J. Phys IV France, 7, C1597 (1997).
24. Abe, M., J. Phys IV France, 7, C1467 (1997).
25. Switzer, J. A., Hung, C. J., Breyfogle, B. E., Shumsky, M. G., Vanleeuwen, R. and Golden, T. D., Science, 264, 1573 (1994).10.1126/science.264.5165.1573
26. Switzer, J. A., Hung, C. J., Huang, L. Y., Miller, F. C., Zhou, Y., Raub, E. R., Shumsky, M. G. and Bohannan, E. W., J. Mater. Res., 13, 909 (1998).10.1557/JMR.1998.0124
27. Zvezdin, A. K. and Kotov, V. A., Modern Magnetooptics and Magnetooptical Materials, Intitute of Physics Publ., London, 1997.10.1887/075030362X
28. Van Hout, M. J. G., Verplanke, J. C. and Robertson, J. M., Mater. Res. Bull. 10, 125 (1975).
29. Georgescu, V., Mazur, V. and Chelogu, O., J. Magnet. Magnet. Mater. 156, 27 (1996).
30. Jyoko, Y., Kashiwabara, S. and Hayashi, Y., J. Electrochem. Soc., 144, L5 (1997).
31. Callegaro, L., Puppin, E., Cavallotti, P. L., Lecis, N. and Zangari, G., J. Appl. Phys., 78, 457 (1995).
32. Shadrov, V. G., Tkachenko, T. M., Boltushkin, A. V. and Semeshko, A. V., Phys. Stat. Sol. A, 141, K51 (1994).
33. Lokhande, C. D., Jadhav, M. S. and Pawar, S. H., J. Electrochem. Soc., 136, 2756 (1989).
34. Yang, M-C., Landau, U. and Angus, J. C., J. Electrochem. Soc., 139, 3480 (1992).10.1149/1.2069103
35. Pannaparayil, T., Marande, R., Komarneni, S. and Sankar, S. G., J. Appl. Phys., 64, 5641 (1998).
36. Dogan, F., O'Rourke, S., Qian, M-X. and Sarikaya, M., Mater. Res. Soc. Symp. Proc., 457, 69 (1997).
37. Hadj Farhat, M. A. and Joubert, J. C., J. Magnet. Magnet. Mater., 62, 353 (1986).
38. Cabafias, M. V., Gonzales-Calbet, J. M. and Vallet-Regi, M., J. Solid State Chem. 115, 347 (1995).
39. Brooman, E. W., Plat. Surf. Fin., 1985, 142.
40. Kajiyoshi, K., Ishizawa, N. and Yoshimura, M., Jpn. J. Appl. Phys., 30, L120 (1991).
41. Chien, A. T., Speck, J. S., Lange, F. F., Daykin, A. C. and Levi, C. G., J. Mater. Res. 10, 1784 (1995).10.1557/JMR.1995.1784
42. Chien, A. T., Zhao, L., Colic, M., Speck, J. S. and Lange, F. F., J. Mater. Res. 13, 649 (1998).
43. Tuller, H. L., Ceram. Trans., 68, 97 (1996).
44. Gutmann, R. J., Chow, T. P., Lakshminarayanan, S., Price, D. T., Steigerwald, J. M., You, L. and Murarka, S. P., Thin Solid Films, 270, 472 (1995).

Solution Flow System for Hydrothermal-Electrochemical Synthesis: New Opportunities for Multilayered Oxide Films

  • W. Suchanek (a1), T. Watanabe (a1), B. Sakurai (a1) and M. Yoshimura (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed