Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T03:25:54.893Z Has data issue: false hasContentIssue false

Solid Phase Superheating During Picosecond Laser Melting of Gallium Arsenide

Published online by Cambridge University Press:  28 February 2011

D. Von Der Linde
Affiliation:
Universitaet Essen, Fachbereich Physik, 4300 Essen 1, Fed. Rep. of Germany
N. Fabricius
Affiliation:
Universitaet Essen, Fachbereich Physik, 4300 Essen 1, Fed. Rep. of Germany
B. Danielzik
Affiliation:
Universitaet Essen, Fachbereich Physik, 4300 Essen 1, Fed. Rep. of Germany
T. Bonkhofer
Affiliation:
Universitaet Essen, Fachbereich Physik, 4300 Essen 1, Fed. Rep. of Germany
Get access

Abstract

The velocity distributions of atoms evaporated from the surface of GaAs during laser heating with nanosecond and picosecond pulses are measured. The atomic velocities provide information about the surface temperature. For picosecond heating we observe a continuous transition of the temperature across the melting point, whereas for nanosecond heating the melting point is marked by a distinct plateau of the temperature curve. From these observations we conclude that the solid is strongly superheated during picosecond irradiation. A detailed analysis suggests superheating of typically a few hundred degrees above the melting point.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bloembergen, N., Mat. Res. Soc. Symp. Proc. 51, 3 (1986)Google Scholar
2. Bucksbaum, P. H. and Bokor, J., Phys. Rev. Lett. 53, 182 (1984)Google Scholar
3. Thompson, M. O., Bucksbaum, P. H., and Bokor, J., Mat. Res. Soc. Symp. Proc. 35, 87 (1985)Google Scholar
4. Williamson, S., Mourou, G., and Li, J. C. M., Mat. Res. Soc. Symp. Proc. 35, 87 (1985)CrossRefGoogle Scholar
5. Fabricius, N., Hermes, P., von der Linde, D., Pospieszczyk, A. and Stritzker, B., Mat. Res. Soc. Symp. Proc. 51, 219 (1986)CrossRefGoogle Scholar
6. Stritzker, B., Pospieszczyk, A., and Tagle, J. A., Phys. Rev. Lett. 47, 356 (1981)CrossRefGoogle Scholar
7. Spaepen, F. and Turnbull, D., in Laser Processing of Semiconductors. ed. by Poate, J. M. and Mayer, J. W. (Academic Press, New York, 1982), p. 15 Google Scholar
8. Blakemore, J. S., J. Appl. Phys. 53, R 123 (1982)Google Scholar
9. Fabricius, N., Hermes, P., von der Linde, D., Pospieszczyk, A., and Stritzker, B., Sol. State. Commun. 58, 239 (1986)Google Scholar
10. Indication of deviations of the temperature determined from velocity distributions of desorbed Xe from the actual surface temperature have been reported by Hussla, I., Coufal, H., Traeger, F., and Chuang, T. J., Ber. Bunsenges. Phys. Chem. 90, 240 (1986)Google Scholar
11. Rosenblatt, G. M., in Treatise on Solid State Chemistry, vol.6A, ed. by Hannay, N. B. (Plenum Press, New York 1976), p. 165 Google Scholar