Skip to main content Accessibility help

Sol-Gel Derived Polyvinylpyrrolidone/Silicon Oxide Composite Materials and Novel Fabrication Technique for Channel Waveguide

  • Makoto Yoshida (a1) and Paras N. Prasad (a1)


Sol-gel derived composite materials of polyvinylpyrrolidone (PVP), SiO2 and TiO2 were studied to achieve low optical propagation loss and high thermal stability in slab waveguides. PVP is a thermally crosslinkable polymer. However, the thermal crosslinking and thermal decomposition take place around the same temperature, 200 °C, resulting in high optical propagation loss. The incorporation of sol-gel processed SiO2 prevents thermal decomposition of PVP and produces remarkably low optical propagation loss even after being baked at 230 °C. We have achieved 0.2 dB/cm optical propagation loss at 633 nm. Furthermore, little index change was observed at 110 °C for 1,000 hours after initial slight increase. Impregnation of sol-gel processed TiO2 into the PVP/SiO2 system was also studied to increase refractive index. A broad manipulation of refractive index, from 1.49 to 1.65, with an optical propagation loss of less than 0.6 dB/cm at 633 nm was accomplished by a careful selection of Ti alkoxide and optimized reaction conditions. PVP/SiO2 slab waveguides were then used to fabricate channel waveguides by using a laser densification technique utilizing metal lines as light absorbent and an Ar laser. An optical propagation loss of 0.9 dB/cm was achieved at 633 nm.



Hide All
1. Zieba, J., Zhang, Y., Prasad, P. N., Casstevens, M. K., and Burzynski, R., SPIE proc. 1758, 403 (1992)
2. Shamrakov, D., Reisfeld, R., Chem. Phys. Lett., 213, 47 (1993)
4. Nandi, M., Conklin, J. A., Salvati, L. Jr, Sen, A., Chem. Mater., 3, 201 (1991)
5. Morikawa, A., Iyoku, Y., Kakimoto, M., Imai, Y., J. Mater. Chem., 2, 679 (1992)
6. Motakef, S., Boulton, J. M., and Uhlmann, D. R., Opt. Lett., 19, 1125 (1994)
7. Morita, K., Hu, Y., Mackenzie, J., Mat. Res. Soc. Proc., 27, 693 (1992)
8. Wolter, H., Glaubitt, W., Rose, K., Mat. Res. Soc. Proc., 27, 719 (1992)
9. Rose, K., Wolter, H., Glaubitt, W., Mat. Res. Soc. Proc., 27, 731 (1992)
10. Fabes, B. D., Taylor, D. J., Weisenbach, L., Stuppi, M. M., Klein, D. L., Raymond, L. J., Zelinski, B. J. J., Birnie, D. P. III, SPIE Proc., 1328, 319 (1990)
11. Klein, L. C., “Sol-gel technology for thin films, fibers, preforms, electronics and specialty shapes” (Noyes Pub. New Jersey, 1988)
12. Brinker, C. J., Scherer, G. W., “Sol-gel science” (Academic Press, Inc., San Diego, CA, 1990)
13. Nishihara, H., Haruna, M., and Suhara, T., “Optical integrated Circuits” (McGraw-Hill, New York, 1989) Chap. 8
14. Weisenbach, L., Davis, T. L., Zelinski, B. J. J., Roncone, R. L., Weller-Brophy, L. A., Mat. Res, Soc. Proc., 180, 377 (1990)
15. Doeuff, S., Henry, M., Sanchez, C., Mat. Res. Bull., 25, 1519 (1990)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed