Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-12T10:03:02.468Z Has data issue: false hasContentIssue false

Sol-Gel Coatings on Carbon/Carbon Composites.

Published online by Cambridge University Press:  28 February 2011

S. M. Sim
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
R. H. Krabill
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
W. J. Dalzell Jr
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
P-Y. Chu
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
D. E. Clark
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

The need for structural materials that can withstand severe environments up to 4000°F has promulgated the investigation of sol-gel derived ceramic and composite coatings on carbon/carbon composite materials. Alumina and zirconia sols have been deposited via thermophoresis on carbon/carbon substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Subbarao, E. C., Advances in Ceramics, Vol.3, Heuer, A. H. and Hobbs, L. W., ed., The American Ceramic Society, Columbus, OH, 1981, p. 1.Google Scholar
2. Lynch, C. T., Refractory Materials: High Temperature Oxides, Vol.5–11, Alper, A. M., ed., Academic Press, NY, 1960, p. 193.Google Scholar
3. Fisher, G., Am. Cer. Soc. Bull., 65 (2) 283 (1986).Google Scholar
4. Webb, R.D., NASA Conference Publication 2406, NASA, 1985, p. 149.Google Scholar
5. Ohlhorst, C. W. and Ransone, P. O., Am. Cer. Soc. Bull., 65 (2) (1986), p. 277.Google Scholar
6. Johnson, A. C. and Finley, J. W., Am. Cer. Soc. Bull., 65 (2) (1986), p. 175.Google Scholar
7. Mazdiyasni, K. S. and Lynch, C. T., Report No. ASO TOR 63–322, May 1963.Google Scholar
8. Mackenzie, J. D., Ultrastructure Processing of Ceramics, Glasses and Composites, Hench, L. L. and Ulrich, D. R., ed., John Wiley & Sons, 1984, p. 15.Google Scholar
9. Dislich, H., J. Non-Cryst. Solids, 63, 237 (1984).CrossRefGoogle Scholar
10. Dislich, H. and Hussmann, E., Thin SoTid Films, 77, 129 (1981).Google Scholar
11. Sakka, S., Kamiya, K., Makita, K. and Yamamoto, Y., J. Non-Cryst. Solids, 63, 223 (1984).CrossRefGoogle Scholar
12. Yoldas, B. E., Appl. Opt. 19, 1425 (1980).CrossRefGoogle Scholar
13. Martinsen, J., Figat, R. A. and Shafer, M. W., Better Ceramics Through Chemistry, Brinker, C. J., Clark, D. E. and Ulrich, D. R., ed., North-Holland, 1984, p. 145.Google Scholar
14. Dalzell, W. J. and Clark, D. E., to be published in Ceram. Eng. Sci. Proc. (1986).Google Scholar
15. Yoldas, B. E., Am. Cer. Soc. Bull., 54 (3) 289 (1975).Google Scholar
16. Bradley, D. C., Mehrotra, and Gaur, D. P., Metal Alkoxides, Academic Press, NY, 1978.Google Scholar
17. Mazdiyasni, K. C., Lynch, C. T. and Smith, J. S., J. Am. Ceram. Soc., 48 (7) 372 (1965).Google Scholar
18. Gadsden, J. A., Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworth, Reading, Mass., 1975.Google Scholar