Skip to main content Accessibility help
×
Home

Soft X-Ray Absorption Microscopy of Surfaces with Synchrotron Radiation

  • G. R. Harp (a1) and B. P. Tonner (a1)

Abstract

As a spectroscopic technique, x-ray absorption near-edge structure (XANES) of core-levels using synchrotron radiation is in wide-spread use for the determination of the molecular composition of solid surfaces. A common detection method measures the yield of secondary electrons, which is proportional to the x-ray absorption coefficient for sufficiently high photon energy. In the experiments reported here, we show how the secondary electrons emitted as a result of photoabsorption can be used to generate a magnified image of the sample surface, with fundamental spatial limits determined by the deBroglie wavelength of the emitted electrons. Contrast in the secondary electron spatial distribution contains both topographical and chemical information about the sample surface. The use of tunable synchrotron radiation enables us to separate these contributions to the microscopic image, and to spatially resolve surface chemical composition as reflected in micro-XANES spectra.

Copyright

References

Hide All
1. Metherell, A. J. F., Adv. in Optical and Electron Microscopy 4, 263 (1971).
2. Cazaux, J., Appl. of Surface Sci. 20, 457 (1985); Ultramicroscopy 12, 321 (1984).
3. Kirschner, J., in Springer Series in Optical Sciences 43, eds. Schmahl, G. and Rudolph, D. (Springer, Berlin, 1984), p. 308.
4. Tonner, B. P. and Harp, G. R., Rev. Sci. Instrum. 59, 853 (1988); J. Vac. Sci. Technol. A, to be published Feb. 1988.
5. Griffith, O. H. and Rempfer, G. F., Adv. in Optical and Electron Microscopy 10, 269 (1987).
6. Telieps, W. and Bauer, E., Surface Sci. 162, 163 (1985).
7. Gudat, W. and Kunz, C., Phys. Rev. Lett. 29, 169 (1972).
8. Erbil, A., Cargill, G. S. III, Frahm, R. and Boehme, R. F., Phys. Rev. B. 37, 2450 (1988).
9. Henke, B., Smith, J. A. and Atwood, D. T., J. Appl. Phys. 48, 1852 (1977).
10. Hachenberg, O. and Brauer, W., Advances in Electronics and Electron Physics (Academic Press, New York, 1959), Vol.11, p. 413.
11. Durham, P., Comp. Phys. Comm. 25, 193 (1982); Sol. State Commun. 38, 159 (1981).
12. Stohr, J., Gland, J. L., Eberhardt, W., Outka, D., Madix, R. J., Sette, F., Koestner, R. J. and Dobler, U., Phys. Rev. Lett. 51, 2414 (1983).
13. Brown, F. C. and Rustgi, O. P., Phys. Rev. Lett. 28, 497 (1972).
14. Bianconi, A., Surface Sci. 89, 41 (19790; A. Bianconi and R. S. Bauer, Surface Sci. 99, 76 (1980).
15. Rubloff, G. W., Hofmann, K., Liehr, M. and Young, D. R., Phys. Rev. Lett. 58, 2379 (1987); R. Tromp, G. W. Rubloff, P. Balk, F. K. LeGoues, and E. J. Van Loenen, Phys. Rev. Lett. 55, 2332 (1985).
16. Polack, F. and Lowenthal, S., Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1984), vol.43, edited by Schmahl, G. and Rudolph, D., p. 251.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed