Skip to main content Accessibility help
×
Home

Sodium Hydride as Alternative Energy Having Hydrogen Absorption and Hydrogen Generation Functions and Hydrogen Fuel Cycle <on-site sodium production for hydrogen on sea and on-demand hydrogen power generation on land>

  • Masataka Murahara (a1) (a2) (a3) and Toshio Ohkawara (a3)

Abstract

Hydrogen was converted to such a material as coal or oil with a low specific gravity so that it could be stored for a longer period and transported for a long distance at room temperature and under atmospheric pressure; which is sodium metal or sodium hydride. Sodium metal is produced with molten-salt electrolysis from seawater by wind power and transported to a thermoelectric power station in the consumption place for hydrogen-fueled combustion power generation. Sodium hydroxide, a waste, is re-electrolyzed to produce sodium for hydrogen generation; which constructs a hydrogen fuel cycle. This hydrogen fuel cycle is a clean, environmentally friendly recycle system that never requires repeated supply of raw materials in the same manner as the nuclear fuel cycle. Sodium or sodium hydride is an alternative energy.

Copyright

References

Hide All
1. Murahara, M. and Seki, K., On-Site Electrolysis Sodium Metal Production by Offshore Wind or Solar Energy for Hydrogen Storage and Hydrogen Fuel Cycle, IEEE/ECCE 2010 Proceeding, Sept. 2010, IEEE, ISBN: 978-1-4244-5287-3/10, pp.4264-4269 (2010).
2. Murahara, M. and, et al. , Editor: Reck, Ruth A., “Climate Change and Sustainable Development”, Linton Atlantic Books, Ltd., pp.215221 (2010).
3. Murahara, M., Forum on Public Policy. A Journal of the Oxford Round Table, Summer 2008 Edition: Environment, p19 (2008), Available: http://www.forumonpublicpolicy.com/summer08papers/envsum08.html.
4. Murahara, M., Seki, K., Sato, Y., and Fujiwara, E., On-site sodium metal production with electrolysis by offshore wind or solar cell power generation for hydrogen generation, 2009 MRS Fall Meeting Symposium W, 1216W03-35(Online Proc.) (2010).
5. Murahara, M., “On-site integrated production plant”, International Patent Application No. PCT/JP2008/058500. International Disclosure Number: WO2008–142995.
6. Murahara, M. and Seki, K., On-Site Sodium Production with Seawater Electrolysis as Alternative Energy for Oil by Offshore Wind Power Generation, IEEE Energy 2030 Conference, Nov.,2008, IEEE, ISBN: 978-1-4244-2850-2, INSPEC No.: 10472272, (2009).
7. Murahara, M. and Seki, K., Use Wind Power not Corn for Ethanol Production –- Marine Resources Recovery with Wind Power and Plants at Sea, Tokyo: Power-Sha, pp. 1144 (2007) (in Japanese).
8. Murahara, M. and Seki, K., Offshore Wind Power Generation System without Grid Connection <on-site sodium production with electrolysis for hydrogen generation>, Proceedings of 7th International Workshop on Large-Scale Integration of Wind Power into Power Systems on Transmission Networks for Offshore Wind Farms, 26-27 May, 2008, Madrid, Spain, pp. 547552, (2008).

Keywords

Sodium Hydride as Alternative Energy Having Hydrogen Absorption and Hydrogen Generation Functions and Hydrogen Fuel Cycle <on-site sodium production for hydrogen on sea and on-demand hydrogen power generation on land>

  • Masataka Murahara (a1) (a2) (a3) and Toshio Ohkawara (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed