Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T16:25:19.133Z Has data issue: false hasContentIssue false

A Small Angle Polarized Neutron Scattering Investigation of Magnetic Correlations in Nanocrystalline Fe89Zr7B3Cu1

Published online by Cambridge University Press:  10 February 2011

Enrico Agosti
Affiliation:
INFM - S3, Dipartimento di Fisica, Università degli Studi di Modena e Reggio Emilia, Italy.
Oscar Moze
Affiliation:
INFM - S3, Dipartimento di Fisica, Università degli Studi di Modena e Reggio Emilia, Italy.
John Cadogan
Affiliation:
INFM - S3, Dipartimento di Fisica, Università degli Studi di Modena e Reggio Emilia, Italy.
Kiyonori Suzuki
Affiliation:
School of Physics, University of New South Wales, Sydney, Australia.
Andre Heinemann
Affiliation:
Berlin Neutron Scattering Centre, Hahn Meitner Institut, Berlin, Germany.
Armen Hoell
Affiliation:
School of Physics, University of New South Wales, Sydney, Australia.
Get access

Abstract

The technique of small angle neutron scattering (SANS) is ideally suited for determining the length scale of magnetic correlations in nanocrystalline materials. The additional use of polarized neutrons also allows for a clear separation between magnetic and non-magnetic scattering. The temperature dependence of the SANS cross-section from a two-phase alloy, consisting of both amorphous and nano-crystalline parts, Fe89Zr7B3Cu1, has been measured in the temperature range from 293 to 500 K. The SANS measurements are accompanied by bulk magnetization and Mössbauer transmission data. In this range of temperatures, the magnetic contrast between the nanocrystalline and amorphous phases, which are both magnetic, changes dramatically. This phase contrast increases up to 380 K, which is the proposed decoupling temperature for the inter-granular exchange stiffness. Above this temperature, the contrast levels off slowly, being totally dominated by the decreasing magnetization of the nanocrystalline phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alben, R., Becker, J. J., and Chi, M. C., J. Appl. Phys. 49, 1653 (1978).Google Scholar
2. Herzer, G., IEEE Trans. Magn. 25, 3327 (1989).Google Scholar
3. Hernando, A., Vazquez, M., Kulik, T. and Prados, C., Phys. Rev. B, 51, 3581 (1995).Google Scholar
4. Suzuki, K. and Cadogan, J. M., Phys. Rev. B 58, 2730 (1998).Google Scholar
5. Suzuki, K. and Cadogan, J. M., J. Magn. Mag. Matls. 203, 229 (1999).Google Scholar
6. Ohnuma, M., Suzuki, J., Funahashi, S., Ishigaki, T., Kuwano, H., Hamaguchi, Y., Materials Transactions, JIM. 7, 918 (1995).Google Scholar
7. Weidenmann, A., J. Appl. Cryst. 33, 428 (2000).Google Scholar
8. Keiderling, U. and Weidenmann, A.. Physica B 213–214, 895 (1995).Google Scholar
9. Handrich, K., Phys. Stat Solidi 32, K55 (1969).Google Scholar
10. Guinier, A. and Fournét, G., Small-Angle Scattering of X-Rays, Wiley, New York (1955).Google Scholar
11. Heinemann, A., Hermann, H., Weidenmann, A., Mattern, N., Wetzig, K., J. Appl. Cryst. 33, J. Appl. Cryst, 33, 1386 (2000).Google Scholar