Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-22T13:17:01.560Z Has data issue: false hasContentIssue false

Size Effects on Yield Instabilities in Nickel

Published online by Cambridge University Press:  26 February 2011

Megan J Cordill
Affiliation:
cordill@cems.umn.edu, University of Minnesota, Chemical Engineering and Materials Science, 421 Washington Ave SE, Minneapolis, MN, 55455, United States
Neville R Moody
Affiliation:
nrmoody@sandia.gov, Sandia National Laboratories, Livermore, CA, 94550, United States
William W Gerberich
Affiliation:
wgerb@umn.edu, University of Minnesota, Chemical Engineering and Materials Science, Minneapolis, MN, 55455, United States
Get access

Abstract

Dislocation events are seen as excursions, or pop-in events, in the load-displacement trace of nanoindentation experiments. When indenting single crystal metals these events occur frequently during quasi-static and dynamic loading. A single crystal of Ni (111) has been indented quasi-statically using three different loading rates (10, 100, and 1000 μN/s) as well as with three different radii diamond indenter tips (1000 nm cone, 300 nm Berkovich, and 50 nm cube corner) to examine the occurrences of excursions. As expected, excursions at higher loads have larger displacements, and that initial loading follows Hertzian behavior up to the point of yield. Also, as the tip size is reduced the excursion loads are reduced. The excursion events depend mostly on the statistical distribution of surface sources and substructure dislocation arrangements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gane, N., Proc. Royal Soc. A317, 367 (1970).Google Scholar
[2] Pethica, J. B., Tabor, D., Surface Science 89, 182 (1979).Google Scholar
[3] Suresh, S., Nieh, T. G., Choi, B. W., Scripta Mater. 41, 951 (1999).Google Scholar
[4] Gerberich, W. W., Mook, W. M., Chambers, M. D., Cordill, M. J., Perrey, C. R., Carter, C. B., Miller, R. E., Curtin, W. A., Mukherjee, R., Girshick, S. L., J. Appl. Mech. 73, 327 (2006).Google Scholar
[5] Kramer, D. E., Yoder, K. B., Gerberich, W. W., Phil. Mag. A81, 2033 (2001).Google Scholar
[6] Corcoran, S. G., Colton, R. J., Lilleodden, E. T., Gerberich, W. W., Phys. Rev. B 55, 16057 (1997).Google Scholar
[7] Tymiak, N. I., Daugela, A., Wyrobek, T. J., Warren, O. L., Acta Mater. 52, 553 (2004).Google Scholar
[8] Gerberich, W. W., Venkataraman, S. K., Huang, H., Harvey, S. E., Kohlstedt, D. L., Acta Metallurgica et Materialia 43, 1569 (1995).Google Scholar
[9] Minor, A. M., Asif, S. A. Syed, Shan, Z., Stach, E. A., Cyrankowski, E., Wyrobek, T. J., Warren, O. L., Nature Materials 5, 697 (2006).Google Scholar
[10] Cordill, M. J., Chambers, M. D., Lund, M. S., Hallman, D. M., Perrey, C. R., Carter, C. B., Bapat, A., Kortshagen, U., Gerberich, W. W., Acta Mater. 54, 4515 (2006).Google Scholar
[11] Kramer, D., Huang, H., Kriese, M., Robach, J., Nelson, J., Wright, A., Bahr, D. F., Gerberich, W. W., Acta Mater. 47, 333 (1999).Google Scholar
[12] Ohmura, T., Matsuoka, S., Tanaka, K., Yoshida, T., Thin Solid Films 385, 198 (2001).Google Scholar
[13] Bahr, D. F., Kramer, D. E., Gerberich, W. W., Acta Mater. 46, 3605 (1998).Google Scholar