Skip to main content Accessibility help

Size distribution of self assembled Ge nanocrystals determined by photoluminescence

  • Nelson Rowell (a1), David Lockwood (a2), Isabelle Berbezier (a3), Pierre David Szkutnik (a4) and Antoine Ronda (a5)...


Germanium nanocrystals (NCs) were formed by in-situ thermal annealing of an amorphous Ge layer deposited by molecular beam epitaxy on a thin SiO2 layer on Si(001). The Ge NCs were then capped in situ with a thin layer of amorphous Si to prevent oxidation. For the present range of particle sizes (2.5 to 60 nm), the NC photoluminescence (PL) appeared primarily as a wide near-infrared band peaked near 800 meV. The peak energy of the PL band reflects the average NC size and its shape depends on the NC size distribution. Using both the k·p and tight binding theoretical models, we have analyzed the PL spectrum in terms of the NC size distribution required to reproduce the observed asymmetric band shape, which includes, for the smaller diameter NCs, a band gap enlargement due to quantum confinement. The observed size distribution determined from transmission electron microscopy analysis allowed the determination of the nonlinear increase in the PL quantum efficiency with decreasing NC diameter. This implies that, given a good theoretical description of the system, it is possible to evaluate the size distribution of semiconductor NCs from their PL energy dependence.



Hide All
1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).
2. Noël, J.-P., Rowell, N. L., Houghton, D.C., Perovic, D.D., Appl. Phys. Lett. 57, 1037 (1990).
3. Rowell, N.L., Noël, J.-P., Houghton, D.C., Buchanan, M., Appl. Phys. Lett. 58, 957 (1991).
4. Tang, Y.S., Sotomayor Torres, C.M., Ni, W.-X., Hansson, G.V., Superlattices and Microstructures 20, 505 (1996).
5. Fukatsu, S., Sunamura, H., Shiraki, Y., Komiyama, S., Thin Solid Films 321, 65 (1998).
6. Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., Zacharias, M., Fauchet, P.M., McCaffrey, J.P., Lockwood, D.J., Appl. Phys. Lett. 72, 43 (1998).
7. Eberl, K., Schmidt, O.G., Kienzle, O., Ernst, F., Thin Solid Films 373, 164 (2000).
8. Lobanov, D.N., Novikov, A.V., Vostokov, N.V., Drozdov, Y.N., Yablonskiy, A.N., Krasilnik, Z.F., Stoffel, M., Denker, U., Schmidt, O.G., Optical Materials 27, 818 (2005).
9. Baribeau, J.-M., Wu, X., Rowell, N.L., Lockwood, D.J., J. Phys.: Condens. Matter 18, R139 (2006).
10. Karmous, A., Berbezier, I., Ronda, A., Phys. Rev. B 73, 075323 (2006).
11. Nayfeh, M.H., Rao, S., Barry, N., Therrien, J., Belomoin, G., Smith, A., Chaieb, S., Appl. Phys. Lett. 80, 121 (2002).
12. Tsybeskov, L., Grom, G.F., Krishnan, R., Montes, L., Fauchet, P.M., Kovalev, D., Diener, J., Timoshenko, V., Koch, F., McCaffrey, J.P., Baribeau, J.-M., Sproule, G.I., Lockwood, D.J., Niquet, Y.M., Delerue, C. and Allan, G., EuroPhys. Lett. 55, 552 (2001).
13. Wan, Q., Wang, T.H., Zhu, M., Lin, C.L., Appl. Phys. Lett. 81, 538 (2002).
14. Kamenev, B.V., Grom, G.F., Lockwood, D.J., McCaffrey, J.P., Laikhtman, B. and Tsybeskov, L., Phys. Rev. B 69, 235306 (2004).
15. King, Y. C., King, T.-J., Hu, C., IEEE Trans. Electron Devices 48, 696 (2001).
16. Delerue, C., Allan, G., Lannoo, M., Phys. Rev. B 48, 11024 (1993).
17. Efros, A.L., Rosen, M., Annu. Rev. Mater. Sci. 30, 475 (2000).
18. Ledoux, G., Gong, J., Huiskena, F., Guillois, O., Reynaud, C., Appl. Phys. Lett. 80, 4834 (2002).
19. Biteen, J.S., Lewis, N.S., Atwater, H.A., Polman, A., Appl Phys. Lett. 84, 5389 (2004).
20. Niquet, Y. M., Allan, G., Delerue, C., Lannoo, M., Appl. Phys. Lett. 77, 1182 (2000).
21. Takeoka, S., Fujii, M., Hayashi, S., Yamamoto, K., Phys. Rev. B 58, 7921 (1998).
22. Berbezier, I., Karmous, A., Ronda, A., Sgarlata, A., Balzarotti, A., Castrucci, P., Scarselli, M., De Crescenzi, M., Appl. Phys. Lett. 89, 063122 (2006).
23. Szkutnik, P.D., Sgarlata, A., Motta, N., Placidi, E., Berbezier, I., Balzarotti, A., Surf. Sci. 601, 2778 (2007).
24. Karmous, A., Berbezier, I., Ronda, A., Hull, R., Graham, J., Surf. Sci. 601, 2769 (2007).
25. Rowell, N.L., Lockwood, D.J., Karmous, A., Szkutnik, P. D., Ayoub, J.-P., Berbezier, I., and Ronda, A., Superlattices and Microstructures 44, 305 (2008).
26. Rowell, N.L., SPIE Proc. 822, 161 (1987).
27. Baribeau, J.-M., Rowell, N.L., and Lockwood, D.J., “Self-Assembled Si1-xGex Dots and Islands”, Chapter 1 of “Self-Organized Nanoscale Materials”, Ed.: Hidachi, M. and Lockwood, D.J., Springer, New York (2006).
28. Lu, Z.H., Baribeau, J.-M., Lockwood, D.J., Buchanan, M., Tit, N., Dharma-wardana, C. and Aers, G.C., “Novel Si Structures for Photonic Applications,” Applications of Photonic Technology 3 (Lampropoulos, G.A. and Lessard, R.A., Eds.), SPIE Proc. 3491, 457 (1998).


Related content

Powered by UNSILO

Size distribution of self assembled Ge nanocrystals determined by photoluminescence

  • Nelson Rowell (a1), David Lockwood (a2), Isabelle Berbezier (a3), Pierre David Szkutnik (a4) and Antoine Ronda (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.