Skip to main content Accessibility help
×
Home

Size dependence in one-dimensional nano-materials and one-dimensional heterojunctions

  • Jing Zhu (a1), Jun Luo (a2), Changqiang Chen (a3), Yu Shi (a4), Xiaohua Liu (a5), Jiong Zhang (a6), Kuiqing Peng (a7) and Zhipeng Huang (a8)...

Abstract

One-dimensional (1D) nano-materials have attracted a plenty of attention due to their novel structures and properties. Our group has carried out researches on synthesis, structure and property of 1D nano-materials, which are introduced in this paper. First, size effects on the crystal structure of Ag nanowires and on Young's modulus in [0001] oriented ZnO nanowires, respectively, have been revealed and modeled. The former is concerning the systemic energy of an individual Ag nanowire. The latter is caused by the surface stiffening effect arising from surface relaxation induced bond length contractions in the ZnO nanowires. Second, structures of 1D helical nano-materials including SWCNT (single-walled carbon nanotube), B-DNA and MWCNT (mutli-walled carbon nanotube) have been studied. It is shown that there is strong orientation dependence of diffraction intensities from SWCNT and B-DNA, which can even result in certain layer lines missing in their diffraction patterns. Also, it is demonstrated that high-resolution transmission electron microscope (TEM) images of sidewall regions of MWCNTs are not structural ones and from the interference of the {0002} and the {1011} diffraction waves. Third, arrays of four types of 1D heterojunctions have been synthesized. Among these 1D heterojunctions, the interfacial structures of the Ni/MWCNT/a-CNT(amorphous carbon nanotube) heterojunctions show that multiple outer walls in the MWCNTs can simultaneously participate in electrical transport. The electrical properties of the Ni/MWCNT/a-CNT and the Ag/a-CNT heterojunctions have been measured. As a result, it is found that the contacts between the Ag nanowires and the a-CNTs are ohmic ones with universal significance, and that each Ni/MWCNT/ a-CNT contains two diodes connected in series face-to-face. Moreover, most of the diodes have the most nearly ideal characteristics of Schottky contacts, indicated by quantitative analysis with the thermionic emission theory. Last, our group has developed a novel technique for rapidly producing large-area highly-oriented Si nanowire arrays on Si wafers by scratching the Si surface with metal nanoparticles near room temperature in HF solution. By this method, Si nanowires with desirable axial crystallographic directions, desirable doping characteristics and remarkable antireflection property can be readily obtained. The Si nanowire arrays have the potential applicability as an antireflective layer for photovoltaic devices and optical detectors. Furthermore, a combination of this method and the nanosphere lithography has been developed to fabricate large-scale Si and Si1−xGex quantum dot arrays with controllable height, diameter and center-to-center distance.

Copyright

References

Hide All
1. Kondo, Y., Takayanagi, K., Science 289, 606 (2000).
2. Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim, F. and Yan, H. Q., Adv. Mater. 15, 353 (2003).
3. Liu, X. H., Luo, J. and Zhu, J., Nano Lett. 6, 408 (2006).
4. Chen, C. Q., Shi, Y., Zhang, Y. S., Zhu, J. and Yan, Y. J., Phys. Rev. Lett. 96, 075505 (2006).
5. Zhang, J. and Zhu, J., Chem. Phys. Lett. 420, 171 (2006).
6. Luo, J., Zhu, J. and Ye, H. Q., Science 303, www.Sciencemag.org/cgi/content/full/303/5659/766c (2004).
7. Luo, J., Zhang, L., Zhang, Y. J. and Zhu, J., Adv. Mater. 14, 1413 (2002).
8. Luo, J., L. Zhang and Zhu, J., Adv. Mater. 15, 579 (2003).
9. Luo, J., Huang, Z. P., Zhao, Y. G., Zhang, L. and Zhu, J., Adv. Mater. 16, 1512 (2004).
10. Luo, J. and Zhu, J., Nanotechnology 17, S262 (2006).
11. Luo, J., Xing, Y. J., Zhu, J., Yu, D. P., Zhao, Y. G., Zhang, L., Fang, H., Huang, Z. P. and Xu, J., Adv. Funct. Mater. 16, 1081 (2006).
12. Peng, K. Q., Yan, Y. J., Gao, S. P. and Zhu, J., Adv. Mater. 14, 1164 (2002).
13. Peng, K. Q., Yan, Y. J., Gao, S. P. and Zhu, J., Adv. Funct. Mater. 13, 127 (2003).
14. Peng, K. Q., Huang, Z. P. and Zhu, J., Adv. Mater. 16, 73 (2004).
15. Peng, K. Q., Wu, Y., Fang, H., Zhong, X. Y., Xu, Y. and Zhu, J., Angew. Chem. Int. Edit. 44, 2737 (2005).
16. Peng, K. Q., Hu, J. J., Yan, Y. J., Wu, Y., Fang, H., Xu, Y., Lee, S. T. and Zhu, J., Adv. Funct. Mater. 16, 387 (2006).
17. Zhang, Y. S., Wang, L. S., Liu, X. H., Yan, Y. J., Chen, C. Q. and Zhu, J., J. Phys. Chem. B 109, 13091 (2005).
18. Huang, Z. P., Wu, Y., Fang, H., Deng, N., Ren, T. L. and Zhu, J., Nanotechnology 17, 1476 (2006).

Keywords

Related content

Powered by UNSILO

Size dependence in one-dimensional nano-materials and one-dimensional heterojunctions

  • Jing Zhu (a1), Jun Luo (a2), Changqiang Chen (a3), Yu Shi (a4), Xiaohua Liu (a5), Jiong Zhang (a6), Kuiqing Peng (a7) and Zhipeng Huang (a8)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.