Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T20:47:14.680Z Has data issue: false hasContentIssue false

Site-Specific Attachment of Gold Nanoparticles to DNA Templates

Published online by Cambridge University Press:  17 March 2011

Karen A. Stevenson
Affiliation:
Thomas Thundat Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Govindarajan Muralidharan
Affiliation:
Thomas Thundat Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Leon Maya
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Jack C. Wells
Affiliation:
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Jacob Barhen
Affiliation:
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

DNA was used as a scaffold for the binding of gold nanoparticles using a standard chemical technique. A DNA template was designed with amino-modified thymines located every 3.7 nm, which would allow the attachment of the carboxylic acid functionalized gold nanoparticles. The gold particles were covalently bound to the amino groups on the DNA using standard 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) chemistry in the presence of a competitor to block excess gold binding sites. The products were analyzed by transmission electron microscopy (TEM) and atomic force microscopy (AFM).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, J., Seeman, N. C. Nature, 350, 631 (1991).Google Scholar
2. Qi, J., Li, X., Yang, X., Seeman, N. C. J. Am. Chem. Soc., 118, 6121 (1996).Google Scholar
3. Zhang, Y., Seeman, N.C. J. Am. Chem. Soc., 116, 1661 (1994).Google Scholar
4. Li, X., Yang, X., Qi, J., Seeman, N. C. J. Am. Chem. Soc., 118, 6131 (1996).Google Scholar
5. Winfree, E., Liu, F., Wenzler, L. A., Seeman, N. C. Nature, 394, 539 (1998).Google Scholar
6. Mueller, J. E., Du, S. M., Seeman, N. C. J. Am. Chem. Soc., 113, 6306 (1991).Google Scholar
7. Du, S. M., Seeman, N. C. Biopolymers, 34, 31 (1994).Google Scholar
8. Mirkin, C. A., Letsinger, R. L., Mucic, R. C., Storhoff, J. J. Nature, 382, 607 (1996).Google Scholar
9. Mitchell, G. P., Mirkin, C. A., Letsinger, R. L. J. Am. Chem. Soc., 121, 8122 (1999).Google Scholar
10. Mirkin, C. A. Inorg. Chem., 39, 2258 (2000).Google Scholar
11. Loweth, C. J., Caldwell, W. B., Peng, X., Alivisatos, A. P., Schultz, P. G. Angew. Chem. Int. Ed. 38, 1808 (1999).Google Scholar
12. Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P. Jr., Schultz, P. G. Nature, 382, 609 (1996).Google Scholar
13. Niemeyer, C. M., Burger, W., Peplies, J. Angew. Chem. Int. Ed., 37, 2265 (1998).Google Scholar
14. Cassell, A. M., Scrivens, W. A., Tour, J. M. Angew. Chem. Int. Ed., 37, 1528 (1998).Google Scholar
15. Maya, L., Muralidharan, G., Thundat, T. G., Kenik, E. A. Langmuir, 16, 9151 (2000).Google Scholar