Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-25T00:36:08.606Z Has data issue: false hasContentIssue false

Sintering of Nanophase TiO2 At 550°C

Published online by Cambridge University Press:  21 February 2011

J. E. Epperson
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 USA.
R. W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 USA.
J. W. White
Affiliation:
Research School of Chemistry, Australian National University, Canberra, Australia and Argonne Fellow, Argonne National Laboratory, Argonne, Illinois 60439 USA.
T. E. Klippert
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 USA.
A. Narayanasamy
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 USA.
J. A. Eastman
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 USA.
F. Trouw
Affiliation:
Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, Illinois 60439 USA.
Get access

Abstract

Samples of nanophase TiO2 were prepared by the condensation of Ti vapors into clusters, their in situ oxidation to TiO2, and their consolidation into thin disks. Small angle neutron scattering was measured in the as-consolidated condition and after selected isothermal sintering anneals of up to 23 h at 550°C. The maximum entropy analysis method was used to obtain the size distributions of the scattering centers from the scattering curves. The results are interpreted in terms of a microstructural model consisting of nanometer sized grains of TiO2 separated by about 0.5 nm wide boundary regions, which contain voids and TiO2 of ≤60–70% of bulk density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Birringer, R., Herr, U. and Gleiter, H., Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).Google Scholar
2. Siegel, R. W. and Hahn, H., in Current Trends in the Physics of Materials, M., Yussouff, ed. (World Scientific Publ. Co., Singapore, 1987) p. 403.Google Scholar
3. Siegel, R. W. and Eastman, J. A., these Proceedings.Google Scholar
4. Siegel, R. W., Ramasamy, S., Hahn, H., Li, Z., Lu, T., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
5. Borkowski, C. J. and Kopp, M. K., J. Appl. Cryst. 11, 430 (1978).CrossRefGoogle Scholar
6. Bates, F. S., private communication; F. S. Bates, J. Appl. Cryst. 21, 681 (1988).CrossRefGoogle Scholar
7. Potton, J. A., Daniell, G. J., Eastop, A. D., Kitching, M., Melville, D., Poslad, S., Rainford, B. D., and Stanley, H., J. Magnetism and Magnetic Mater. 39, 95 (1983).CrossRefGoogle Scholar
8. Potton, J. A., private communication, January 1988.Google Scholar
9. Eastman, J. A., Epperson, J. E., Hahn, H., Klippert, T. E., Narayanasamy, A., Ramasamy, S., Siegel, R. W., White, J. W., and Trouw, F., these Proceedings.Google Scholar