Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-11T13:01:58.662Z Has data issue: false hasContentIssue false

Sintered Glasses for High-Level Wastes

Published online by Cambridge University Press:  03 September 2012

D. O. Russo
Affiliation:
CNEA, Centro Atòmico Bariloche, RN 8400, ARGENTINA
N. B. Messi de Bernasconi
Affiliation:
CNEA, Centro Atòmico Bariloche, RN 8400, ARGENTINA
M. E. Sterba
Affiliation:
CNEA, Centro Atòmico Bariloche, RN 8400, ARGENTINA
A. D. Heredia
Affiliation:
CNEA, Centro Atòmico Bariloche, RN 8400, ARGENTINA
M. Sanfilippo
Affiliation:
CNEA, Centro Atòmico Bariloche, RN 8400, ARGENTINA
S. Prastalo
Affiliation:
CNEA, Centro Atòmico Bariloche, RN 8400, ARGENTINA
J. C. Sbriller
Affiliation:
CNEA, Centro Atòmico Bariloche, RN 8400, ARGENTINA
Get access

Abstract

The objective of the work was to evaluate the long-term capacity of sintered glass to retain high-level nuclear wastes (HLW) in near-repository conditions. We have studied the corrosion behavior of waste forms partially devitrified (43 vol.%) in different aqueous media. Devitrified samples were irradiated at doses (γ radiation from a Co 60 source) ranging from 1.4 × 106 Gy to 2.0 × 108 Gy, in order to study their aqueous corrosion resistance in simulated underground water. The results show little or no effect of irradiation on the density, microstructure and corrosion resistance. The global dissolution rate was almost constant around a value of 5×10−5 g. cm−2 d−1. Elemental dissolution rates were also unaffected by radiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Audero, M.A., Bevilacqua, A. M., Messi de Bernasconi, N. B., Russo, D. O. and Sterba, M. E., J. Nucl. Mater. 223, p. 151156 (1995).Google Scholar
2. Bevilacqua, A. M., Messi de Bernasconi, N. B., Russo, D. O., Audero, M. A., Sterba, M E and Heredia, A. D., J. Nucl. Mater. 229, p. 187193 (1996).Google Scholar
3. Gahlert, S and Ondracek, G., in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R.C. (North-Holland, Amsterdam, 1988) p. 161.Google Scholar
4. Bevilacqua, A. M., Messi de Bernasconi, N. B., and Sterba, M. E., Proc. Annual Meeting of the Argentine Association of Nuclear Technology (AATN), Bariloche, 1987.Google Scholar
5. Hermans, P.H. and Weidinger, A., Makromol. Chem. 24, p. 44 (1961).Google Scholar
6. Materials Characterization Center, Materials Characterization Center Test Methods, PNL-3990, Battelle Pacific Northwest Laboratories (1981).Google Scholar
7. Semino, C.J.. Final Report of Contract IAEA N°6504/RB.Google Scholar
8. Schwartz, I., Mintz, M.H. and Shamir, N., J. Nucl. Mater. 172, p. 314318 (1990).Google Scholar
9. Buckwalter, C Q and Pederson, L.R., J. Am. Ceram. Soc. 65, p. 431 (1982).Google Scholar
10. Shelby, J.E., J. Appl. Phys. 51, p. 25612565 (1980).Google Scholar
11. Bibler, N.E. in Scientific Basis for Nuclear Waste Management, edited by Topp, S.V. (North-Holland, New York, 1982) p. 681.Google Scholar
12. Weber, W.J., Nucl. Instr. and Methods in Phys. Res. B32, p. 471479 (1988).Google Scholar
13. Inagaki, Y., Furuya, H., Idemitsu, K. and Yonezawa, S., J. Nucl. Mater., 208, p. 2734 (1994)Google Scholar
14. Matzke, H.J. and Vernaz, E., J. Nucl. Mater., 201, p. 295309 (1993).Google Scholar