Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-21T11:58:08.360Z Has data issue: false hasContentIssue false

Single-Crystal Thin Films of SrFeO2 and LaNiO2 with Infinite-Layer Structures

Published online by Cambridge University Press:  01 February 2011

Yuichi Shimakawa
Affiliation:
shimak@scl.kyoto-u.ac.jp, ICR, Kyoto University, Uji, Japan
Satoru Inoue
Affiliation:
inoue@msk.kuicr.kyoto-u.ac.jp, ICR, Kyoto University, Uji, Kyoto, Japan
Masanori Kawai
Affiliation:
kawai@msk.kuicr.kyoto-u.ac.jp, ICR, Kyoto University, Uji, Kyoto, Japan
Noriya Ichikawa
Affiliation:
nori@msk.kuicr.kyoto-u.ac.jp, ICR, Kyoto University, Uji, Kyoto, Japan
Masaichiro Mizumaki
Affiliation:
mizumaki@spring8.or.jp, JASRI/SPring-8, Sayo, Hyogo, Japan
Naomi Kawamura
Affiliation:
naochan@spring8.or.jp, JASRI/SPring-8, Sayo, Hyogo, Japan
Get access

Abstract

Infinite-layer-structure epitaxial thin films of SrFeO2 and LaNiO2 respectively were prepared by low-temperature reduction with CaH2 from brownmillerite SrFeO2.5 and perovskite LaNiO3 epitaxial thin films grown on single-crystal substrates. The reduction process, removing oxygen ions from the perovskite-structure framework and causing rearrangements of oxygen ions, topotactically transforms the initial compounds to the c-axis oriented infinite-layer-structure epitaxial thin films. Consequently, the oxidation state of transition-metal ions in the film changed in wide ranges.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hodges, J. P., Short, S., Jorgensen, J. D., Xiong, X., Dabrowski, B., Mini, S. M., and Kimball, C. W., J. Solid State Chem. 151, 190 (2000).Google Scholar
2. MacChesney, J. B., Sherwood, R. C., and Potter, J. F., J. Chem. Phys. 43, 1907 (1965).Google Scholar
3. Grenier, J. C., Wattiaux, A., Doumerc, J. P., Dordor, P., Fournes, L., Chaminade, J. P., and Pouchard, M., J. Solid State Chem. 96, 20 (1992).Google Scholar
4. Hayward, M. A. and Rosseinsky, M. J., Nature 450, 960 (2007).Google Scholar
5. Tsujimoto, Y., Tassel, C., Hayashi, N., Watanabe, T., Kageyama, H., Yoshimura, K., Takano, M., Ceretti, M., Ritter, C., and Paulus, W., Nature 450, 1062 (2007).Google Scholar
6. Sreedhar, K., Honing, J. M., Darwin, M., McElfresh, M., Shand, P. M., Xu, J, Crooker, B. C., and Spalek, J., Phys. Rev. B 46, 6382 (1992).Google Scholar
7. Sánchez, R. D., Causa, M. T., Caneiro, A., Butera, A., Vallet-Regí, M., Sayagués, M. J., González-Calbet, J., García-Sanz, F., and Rivas, J., Phys. Rev. B 54, 16574 (1996).Google Scholar
8. Hayward, M. A., Green, M. A., Rosseinsky, M. J., and Sloan, J., J. Am. Chem. Soc. 121, 8843 (1999).Google Scholar
9. Inoue, S., Kawai, M., Shimakawa, Y., Mizumaki, M., Kawamura, N., Watanabe, T., Tsujimoto, Y., Kageyama, H., and Yoshimura, K., Appl. Phys. Lett. 92, 161911 (2008).Google Scholar
10. Roosendaal, S. J., van Asselen, B., Elsenaar, J. W., Vredenberg, A. M., and Habraken, F. H. P. M., Surf. Sci. 442, 329 (1999).Google Scholar
11. Kawai, M., Inoue, S., Mizumaki, M., Kawamura, N., Ichikawa, N., and Shimakawa, Y., submitted to Appl. Phys. Lett.Google Scholar
12. Sahiner, A., Croft, M., Guha, S., Perez, I., Zhang, Z., Greenblatt, M., Metcalf, P. A., Jahns, H., Liang, G., Phys. Rev. B 51, 5879 (1995).Google Scholar