Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T12:31:52.526Z Has data issue: false hasContentIssue false

The Single Phase Regions and the Phase Stability of the High-Tc Superconducting Compounds Bi2+x(Sr,Ca)3Cu2O8+d (2212) and Bi2−x(Sr,Ca)4Cu3O10+d (2223)

Published online by Cambridge University Press:  26 February 2011

Peter Majewski
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, 7000 Stuttgart 80, F.R.G.
Bernhard Hettich
Affiliation:
Hoechst AG, Materialforschung, 6230 Frankfurt a. M. 80, F.R.G.
Get access

Abstract

The 2212 phase exhibits an extended single phase region having a variable Sr/Ca ratio and Bi-content of 2.1 < Bi < 2.3. At T = 820°C the single phase region extends between 2.05/0.95 > Sr/Ca > 1.2/1.8, whereas, at T = 870° C the single phase region extends between 2.2/0.8 > Sr/Ca > 1.6/1.4. The 2223 phase exhibits a significant higher Bi-content of Bi ∼ 2.5 compared to the formal composition Bi2Sr2Ca2Cu3O10. The Sr/Ca ratio varies between 2/2 > Sr/Ca > 1.9/2.1 reffering to Cu-content of Cu = 3. Samples with the nominal composition Bi2.5Sr2Ca2Cu3Ox and Bi2.5Sr1.9Ca2.1Cu3Ox have been sintered at 880 – 885°C for 90 h in air and consist of 90 – 95 volume percent 2223 phase. Tc depends on the chemical composition of the phases. With decreasing Ca- and Bi-content of the phases Tc increases. Both phases are metastable at roomtemperature. 2212 and 2223 rapidly decompose at 600 °C and 800 °C in air, respectively. At 300°c two new Bi-Sr-Cuprates have been found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Flükiger, R., Graf, T., Decroux, M., Groth, C., and Yamada, Y., IEEE Trans. Mag. Mag-27 (2, 3) (1991).Google Scholar
2) Yamada, Y., Obst, B., and Flükiger, R., Supercond. Sci. Technol., 4 (1991), 165171.Google Scholar
3) Sato, K., Hikata, T., Mukai, H., Ueyama, M., Shibata, N., Kato, T., Masuda, T., Nagata, M., Iwata, K., and Mitsui, T., IEEE Trans. Mag., Mag-27 (2, 3) (1991).Google Scholar
4) Tenbrink, J., Wilhelm, M., Heine, K., and Krauth, H., IEEE Trans. Mag, Mag-27 (2, 3) (1991).Google Scholar
5) Bock, J., and Preisler, E., Proc. of the Int. Cryogenic Materials Conference on High-Temperature Superconductors - Materials Aspects, May 8–11, 1990, Garmisch-Partenkirchen, F. R. G., 215226.Google Scholar
6) Majewski, P., Freilinger, B., Hettich, B., Popjx, T. and Schulze, K., Proc. of the Int. Cryogenic Materials Conference on High Temperature Superconductors -Materials Aspects, May 8–11, 1990, Garmisch - Partenkirchen, F. R. G., 393398.Google Scholar
7) Hettich, B., Freilinger, B., Majewski, P., Popp, T., and Schulze, K., Proc. of the Int. Cryogenic Materials Conference on High Temperature Superconductors -Materials Aspects, May 8–11, 1990, Garmisch - Partenkirchen, F. R. G., 399404.Google Scholar
8) Schulze, K., Majewski, P., Hettich, B., and Petzow, G., Z. Metallkde, 81 (1990) 836.Google Scholar
9) Majewski, P., Hettich, B., Jaeger, H., and Schulze, K., Adv. Mat., 3 (1991), 6769.Google Scholar
10) Majewski, P., Hettich, B., Schulze, K. und Petzow, G., Adv. Mat., 2, (1991), 488491.Google Scholar
11) Majewski, P., Hettich, B. und Schulze, K., Proceedings of the Internat. Conf. on Materials and Machanism of Superconductivity, Kanazawa, Japan, Juli 1991.Google Scholar
12) Majewski, P., Hettich, B., Schulze, K. und Petzow, G., Proceedings of the 2nd Conf. of the Europ. Ceramic Soc, Augsburg, September 1991, in press.Google Scholar
13) Majewski, P., Su, H. -L., Hettich, B., Adv. Mat., 1992, acceptedGoogle Scholar
14) Hong, B. and Mason, T. O., J. Am. Ceram. Soc, 74 (1991), 1045 - 1052.Google Scholar
15) Eibl, O., Physica C, 184 (1991), 93101.Google Scholar