Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T16:01:56.578Z Has data issue: false hasContentIssue false

Simulation of Rapid Thermal Annealed Boron Ultra-Shallow Junctions in Inert and Oxidizing Ambient

Published online by Cambridge University Press:  10 February 2011

W. Lerch
Affiliation:
STEAG AST Elektronik GmbH, Dornstadt, Germany, W.LERCH@STEAG-AST.DE
M. Glück
Affiliation:
STEAG AST Elektronik GmbH, Dornstadt, Germany
N. A. Stolwijk
Affiliation:
Institut für Metallforschung, Westfälische Wilhelms-Universität Miunster, Germany
H. Walk
Affiliation:
STEAG AST Elektronik GmbH, Dornstadt, Germany CADwalk, Allmendingen, Germany
M. Schäfer
Affiliation:
CADwalk, Allmendingen, Germany
S. D. Marcus
Affiliation:
STEAG AST Elektronik, Tempe (AZ), USA
D. F. Downey
Affiliation:
Varian Ion Implant Systems, Gloucester (MA), USA
J. W. Chow
Affiliation:
Varian Ion Implant Systems, Gloucester (MA), USA
H. Marquardt
Affiliation:
Silvaco Data Systems, Munich, Germany
Get access

Abstract

Rapid Thermal Annealing (RTA) is indispensable for the formation of ultra-shallow source/drain junctions. To improve the annealing conditions, a fundamental understanding of the influences on the diffusion/activation process is necessary. Ion implantations of 1 keV boron at a dose of Φ≈1 I.1015 cm-2 are annealed in a SHS2800E RTP-system under controlled concentrations of oxygen in nitrogen ambient (0-1 ppm up to 1%). Concentration-depth profiles, measured by Secondary Ion Mass Spectroscopy (SIMS), are simulated within the framework of the kickout model involving diffusion enhancement via supersaturation of silicon self-interstitials. The validity of this interpretation is supported by the simulated results which are in good agreement with expenimental data. After RTA for 10 s at 1050°C the junctions are varying within a range of 800Å to 1400Ådepending on the annealing ambient. The results of the simulation yield finite values of self-interstitial supersaturation as a function of the oxygen concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Roozeboom, F. in Advances in Rapid Thermal and Integrated Processing, edited by F., Roozeboom, NATO ASI Series E, Vol.318, (Kluwer Academic Publ. 1996)Google Scholar
[2] Downey, D. F., Darayanani, S. L., Meloni, M., Brown, K., Felch, S. B., Lee, B. S., Marcus, S. D., J. C. Gelpey Mat. Res. Soc. Symp. Proc. 470 299311 (1997)Google Scholar
[3] Downey, D. F., Osburn, C. M., Marcus, S. Solid State Technology No. 12/97 7182 (1997)Google Scholar
[4] Marcus, S. D., Downey, D. F., Darayanani, S. L., Chow, J. W. Proc. 5th Int. Conf. on Advanced Thermal Processing-RTP'97 64–71 (1997)Google Scholar
[5] Osburn, C. M., Downey, D. F., Felch, S. B., B. S. Lee Proc. 11th Int. Conf. on Ion Implantation Technology 6774 (1997)Google Scholar
[6] Magee, C. M., Shallenberger, J., Denker, M., Downey, D. F., Meloni, M., Clotherty, S., Felch, S. B. Proc. 4th Intl. Workshop on Ultra-Shallow Junctions p. 8.1 (April 1997)Google Scholar
[7] Downey, D. F., U.S. Patent pending application Methods for forming shallow junctions in semiconductor wafers using controlled low level oxygen ambient during annealing (1998)Google Scholar
[8] Semiconductor Industry Association (SIA) National Technology Roadmap for Semiconductors, Stevens Creek Blvd., Suite 271, San José (CA) 1997 Google Scholar
[9] Lilak, A. D., Earles, S. K., Jones, K. S., Law, M. E., Giles, M. D. IEEE Tech. Dig. IEDM'97, 493496, Washington, Dec. 1997 Google Scholar
[10] Yu, S. S., Kennel, H. W., Giles, M. D., Packan, P. A. IEEE Tech. Dig. IEDM'97, 509512, Washington, Dec. 1997 Google Scholar
[11] Hu, S.M. Appl. Phys. Lett. 43(5) 449451 (1983)Google Scholar
[12] Hu, S.M. J. Electrochem. Soc. 139(7) 20662075 (1992)Google Scholar
[13] Chao, H. S., Griffin, P. B., Plummer, J. D., Rafferty, C. S., Appl. Phys. Lett., 69 21132115 (1996)Google Scholar
[14] Eaglesham, D. J., Stolk, P. A., Gossmann, H.-J., Poate, J. M. Appl. Phys. Lett. 65 23052307 (1994)Google Scholar
[15] Cowern, N. E. B., van de Walle, G. F. A., Zalm, P. C., Vandenhoudt, D. W. E. Appl. Phys. Lett. 65(23) 29812983 (1994)Google Scholar
[16] Agarwal, A., Eaglesham, D. J., Gossmann, H.-J., Pelaz, L., Hemer, S. B., Jacobson, D. C., Haynes, T. E., Erokhin, Y., Simonton, R. IEEE Tech. Dig. IEDM0'97, 467–470, Washington, Dec. 1997 Google Scholar
[17] Downey, D. F., Chow, J. W., Lerch, W., Nieβ, J., Marcus, S. D. The Effects of Small Concentrations of Oxygen in RTP Annealing of Low Energy Boron. BF2 and Arsenic Ion Implants to be presented at MRS April 1998, and published in the MRS RTP ProceedingGoogle Scholar
[18] Walk, H., Schäfer, M., Glück, M., König, U. Solid State Technology No. 3/97 1618 (1997)Google Scholar
[19] Glück, M., Behammer, D., Schäfer, M., Walk, H., König, U. Proc. of SISPAD'97, 197200, 8.-10.9.1997, Cambridge (MA) Google Scholar
[20] Computer code SSUPREM IV developed at the Integrated Circuits Laboratory Stanford University by Dutton, R. W. and Plummer, J. D. Google Scholar
[21] ATHENA is a trademarked and commercially available process simulation framework developed by SILVACO International comprising SSUPREM IVGoogle Scholar
[22] Götzlich, J. F., Haberger, K., Ryssel, H.Gordon and Breach Science Publishers Inc. 203–209 (1980)Google Scholar
[23] Lerch, W. phys. stat. sol. (a) 158 117136 (1996)Google Scholar
[24] Mader, R., private communications,Google Scholar
[25] Marcus, S., Lerch, W., Downey, D. F., Todorow, S., Chow, J. RTP Requirements to yield uniform and repeatable Ultra-Shallow Junctions with low energy Boron and BF. ion implants presented at 127th Annual Meeting & Exhibition of the TMS 1998, 15. - 17. Feb. 1998 San Antonio (TX), to be published in J. of El. Mat. June/July (1998)Google Scholar
[26] Cowern, N. E. B., Janssen, K. T. F., Walle, G. F. A. van de, Gravesteijn, D. J. Phys. Rev. 65(19) 24342437 (1990)Google Scholar
[27] Cowern, N. E. B., Walle, G. F. A. van de, Zalm, P. C., Oostra, D. J. Phys. Rev. 69(1) 116119 (1992)Google Scholar
[28] Griffin, P. B., Lever, R. F., Packan, P. A., Plummer, J. D. Appl. Phys. Lett. 64(19) 12421244 (1994)Google Scholar
[29] ösele, U., Frank, W., Seeger, A. Appl. Phys. 23 361368 (1980)Google Scholar
[30] , Landolt-Börnstein: New Series III/33A, Group III: Condensed Matter Diffusion in Semiconductors and Non-Metallic Solids Subvolume A, Diffusion in Semiconductors, ed. by Beke, D. L. (Springer, Berlin) 1998 Google Scholar
[31] Solmi, S., Baruffaldi, F., Canteri, R. J. Appl. Phys. 69(4) 21352142 (1991)Google Scholar
[32] Hobler, G., Vuong, H.-H., Bevk, J., Agarwal, A., Gossmann, H.-J., Jacobson, D. C., Foad, M., Murrell, A., Erokhin, Y. IEEE Tech. Dig. IEDM'97, 489492, Washington, Dec. 1997 Google Scholar
[33] Sze, S. M., VLSI Technology, 2nd Edition, (McGraw-Hill International Editions, 1988), pp. 332340 Google Scholar
[34] Parab, K. B., Hang, D. H., Morris, S. J., Tian, S., Tasch, A. F., Kamenitsa, D., Simonton, R., Magee, C. J. Vac. Sci. Technol. B14(1) 260264 (1996)Google Scholar
[35] Nenyei, Z., Sommer, S., Gelpey, J., Bauer, A. Mater. Res. Soc. Proc. 342 401406 (1994)Google Scholar
[36] Nenyei, Z., Wein, G., Lerch, W., Grunwald, C., Gelpey, J., Wallmtiller, S. Proc. 5th Int. Conf. on Advanced Thermal Processing-RTP'97, 3544 (1997)Google Scholar
[37] Smith, F. W., Ghidini, G. D. J. Electrochem. Soc. 129(6) 13001306 (1982)Google Scholar
[38] Nenyei, Z., Rührnschopf, K. private communications, 1998 Google Scholar
[39] Fahey, P. M., Griffin, P. B., Plummer, J. D. Rev. Mod. Phys. 61(2) 289384 (1989)Google Scholar
[40] Webb, R. P., Foad, M. A., Gwilliam, R. M., Knights, A. P., Thomas, G. Mat. Res. Soc. Proc. 469 5963 (1997)Google Scholar
[41] Bracht, H., Stolwijk, N. A., Mehrer, H. Phys. Rev. B52 1654216550 (1995)Google Scholar
[42] Antoniadis, D. A., Gonzalez, A. G., R. W. Dutton J. Electrochem. Soc. 125(5) 813819 (1978)Google Scholar
[43] Fair, R. B., in Impurity Doping, edited by Wang, F. F. Y. (North Holland Publishing Company, Amsterdam, North Holland) pp. 315442 (1981)Google Scholar
[44] Paote, J. M., Eaglesham, D. J., Gilmer, G. H., Gossmann, H.-J., Jaraiz, M., Rafferty, C. S., Stolk, P. A. IEEE Tech. Dig. IEDM'95, 7780, Washington, Dec. 1995 Google Scholar
[45] Zhang, L. H., Jones, K. S., Chi, P. H., Simons, D. S. Appl. Phys. Lett. 67(14) 20252027 (1995)Google Scholar
[46] Michel, A. E., Rausch, W., Ronsheim, P. A., Kastl, R. H. Appl. Phys. Lett. 50(7) 416418 (1987)Google Scholar
[47] Lerch, W., Stolwijk, N. A. J. Appl. Phys. 83(3) 13121320 (1998)Google Scholar