Skip to main content Accessibility help

Simulating Radiation-Induced Defect Formation in Pyrochlores

  • David S.D. Gunn (a1), John A. Purton (a1) and Ilian T. Todorov (a1)


The accuracy and robustness of new Buckingham potentials for the pyrochlores Gd2Ti2O7 and Gd2Zr2O7 is demonstrated by calculating and comparing values for a selection of point defects with those calculated using a selection of other published potentials and our own ab inito values. Frenkel pair defect formation energies are substantially lowered in the presence of a small amount of local cation disorder. The activation energy for oxygen vacancy migration between adjacent O48f sites is calculated for Ti and Zr pyrochlores with the energy found to be lower for the non-defective Ti than for the Zr pyrochlore by ∼0.1 eV. The effect of local cation disorder on the VO48f → VO48f migration energy is minimal for Gd2Ti2O7, while the migration energy is lowered typically by ∼43 % for Gd2Zr2O7. As the healing mechanisms of these pyrochlores are likely to rely upon the availability of oxygen vacancies, the healing of a defective Zr pyrochlore is predicted to be faster than for the equivalent Ti pyrochlore.



Hide All
1. Gunn, D.S.D. et al. ., J. Mater. Chem. 22, 4675 (2012)10.1039/c2jm15264a
2. Purton, J.A. and Allan, N.L., J. Mater. Chem. 12, 2923 (2002)10.1039/b201111p
3. Devanathan, R., Weber, W.J. and Gale, J.D., Energy Environ. Sci., 3, 1551 (2010)10.1039/c0ee00066c
4. Wilde, P.J. and Catlow, C.R.A., Solid State Ionics 112, 173 (1998)10.1016/S0167-2738(98)00190-8
5. Gale, J.D., J. Chem. Soc., Faraday Trans., 93, 629 (1997)10.1039/a606455h
6. Mott, N.F. and Littleton, M.J., Trans. Faraday Soc. 34, 485 (1938)10.1039/tf9383400485
7. Henkelman, G. and Jónsson, H., J. Chem. Phys. 113, 9978 (2000)10.1063/1.1323224
8. Kästner, J. et al. ., J. Phys. Chem. A 113, 11856 (2009)10.1021/jp9028968
9. Liu, D.C. and Nocedal, J., Math. Program. 45, 503 (1989)10.1007/BF01589116
10. Anglade, P.-M. et al. ., Computer Phys. Commun. 180, 2582 (2009)
11. Burke, K., Perdew, J.P. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)
12. Kresse, G. and Joubert, J., Phys. Rev. B 59, 1758 (1999)10.1103/PhysRevB.59.1758
13. Broyden, C.G., J. Inst. Math. App. 6, 76 (1970); R. Fletcher, Comp. J. 13, 317(1970); D. Goldfarb, Math. Comp. 24, 23 (1970); D.F. Shanno, Math. Comp. 24, 647 (1970) 10.1093/imamat/6.1.76
14. Knop, O., Brisse, F. and Castelliz, L., Can. J. Chem. 47, 971 (1969)10.1139/v69-155
15. Bush, T.S. et al. ., J. Mater. Chem. 4, 831 (1994)10.1039/jm9940400831
16. Minervini, L., Grimes, R.W. and Sickafus, K.E., J. Am. Ceram. Soc. 83, 1873 (2000)10.1111/j.1151-2916.2000.tb01484.x
17. Williford, R.E. et al. ., J. Electroceram 3, 409 (1999)10.1023/A:1009978200528
18. Pirzada, M. et al. ., Solid State Ionics 140, 201 (2001)10.1016/S0167-2738(00)00836-5
19. Tuller, H.L., J. Phys. Chem. Solids 55, 1393 (1994)10.1016/0022-3697(94)90566-5
20. Kramer, S., Spears, S. and Tuller, H.L., Solid State Ionics 72, 59 (1994)10.1016/0167-2738(94)90125-2
21. van Dijk, M.P., de Vries, K.J. and Burggraaf, A.J., Solid State Ionics 9, 913 (1983)10.1016/0167-2738(83)90110-8
22. Moon, P.K. and Tuller, H.L., MRS Online Proc. Libr. 135, 149 (1989)10.1557/PROC-135-149
23. Burggraaf, A.J., van Dijk, T. and Veerkerk, M.J., Solid State Ionics 5, 519 (1981)10.1016/0167-2738(81)90306-4


Simulating Radiation-Induced Defect Formation in Pyrochlores

  • David S.D. Gunn (a1), John A. Purton (a1) and Ilian T. Todorov (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed