Skip to main content Accessibility help

Simple Use of SiO2 Film Thickness for the Control of Carbon Nano-Tube Diameter During Ferrocene Catalyzed CVD Growth

  • N. Chopra (a1), P.D. Kichambare (a1), R. Andrews (a1) and B. J. Hinds (a1)


Selective growth of carbon nano-tubes (CNT) on micron scale patterned substrates has been accomplished by taking advantage of the non-reactivity of ferrocene catalyst on H-terminated Si surfaces in a CVD process. Demonstrated here is that this phenomenon can be used to control the diameter of CNTs when sufficiently narrow lines of SiO2 surrounded by H-terminated Si are used. Narrow lines of SiO2 (12–60nm) are formed at the etched face of a Si/SiO2/Si multilayer structure. This allows the precisely controllable thickness of an SiO2 film to determine an exposed SiO2 line width. There is no need for e-beam lithography since film thickness determines nm-scale line dimensions. CNTs are then formed by CVD with a ferrocene/H2/Ar mixture at 700°C. CNTs are observed to grow only on the exposed SiO2 surface at the edge of the ‘mesa’ structure. CNT diameters of 13.2, 20.5, 34.2, 64.3nm are observed for SiO2 film thickness of 12, 19, 35, and 65 nm. The larger distribution of CNT diameter with increased line width is consistent with wider SiO2 linewidths not being able to affect smaller nucleation centers. These results are consistent with the use of self-assembly chemistry of iron catalyst onto nano-particles of catalyst support.



Hide All
1. Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C., Science, 294, 1317 (2001)
2. Chang, H.,; Lee, J. D., Lee, S. M., and Lee, Y. H., Appl. Phys. Lett., 79, 3863 (2001)
3. Williams, P. A., Papadakis, S. J., Falvo, M. R., Patel, A. M., Sinclair, M., Seeger, A., Helser, A., Taylor, R. M., Washburn, S., and Superfine, R., Appl. Phys. Lett., 80, 2574 (2002)
4. Cassell, A. M., Franklin, N. R., Tombler, T. W., Chan, E. M., Han, J., and Dai, H. J., J. Am. Chem. Soc. 121, 79757976 (1999).
5. Franklin, N. R. and Dai, H. J., Adv. Mater. 12, 890894 (2000).
6. Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C., and Chen, J., Chem. Phys. Lett. 303, 467474 (1999).
7. Sinnott, S. B., Andrews, R., Qian, D., Rao, A. M., Mao, Z., Dickey, E. C., and Derbyshire, F., Chem. Phys. Lett. 315, 2530 (1999).
8. Ho, G. W., Wee, A. T. S., Lin, J., and Tjiu, W. C., Thin Solid Films 388, 7377 (2001).
9. Hernadi, K., Fonseca, A., Nagy, J. B., Bernaerts, D., Fudala, A., and Lucas, A. A., Zeolites 17, 416423 (1996).
10. Hernadi, K., Fonseca, A., Piedigrosso, P., Delvaux, M., Nagy, J. B., Bernaerts, D., and Riga, J., Catal. Lett. 48, 229238 (1997).
11. Wei, B. Q., Zhang, Z. J., Ajayan, P. M., and Ramanath, G., Carbon 40, 4751 (2002).
12. Wei, B. Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., and Ajayan, P. M., Nature 416, 495496 (2002).
13. Qian, D. Ph.D. Dissertation, University of Kentucky (2001)
14. Rao, A. M., Jacques, D., Haddon, R. C., Zhu, W., Bower, C., and Jin, S., Appl. Phys. Lett., 76, 3813 (2000).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed