Skip to main content Accessibility help

Silicon-Based Optoelectronics

  • Ch. Buchal (a1), M. Löken (a1) and M. Siegert (a1)


The potential of silicon-based designs for various optoelectronic functions is discussed. Sibased light detectors are the most advanced, especially in the form of metal-Si-metal (MSM) photodetectors. They use Si band to band absorption for visible light and Schottky-barrier emission for the infrared (IR). The different light sources show rapid progress, but still face challenges to reach a quantum efficiency of 10−2. In addition to the intrinsic silicon based designs, some new Si breadboard concepts are shown: especially for waveguides, modulators and all-optical amplifiers, it may be advantageous to add entirely different materials (polymers, glasses, BaTiO3 or Al2O3) onto the Si wafer.



Hide All
1. Please refer also to the other contributions to this MRS Fall 1997 symposium: “Materials and Devices for Silicon-Based Optoelectronics”, Mat. Res. Soc. Symp. Proc. 486 (1998)
2. Soref, R. A. “Silicon-Based Optoelectronics”, Proc. IEEE 81 (12), 1687 (1993)
3. Henry, C. H., Blonder, G. E., Kazarinov, R. F. “Glass Waveguides on Silicon for Hybrid Optical Packaging”, IEEE J. Light-wave Techn. 7,1530 (1989)
4. Reed, G. T., Rickman, A. G., Weiss, B. L., Namavar, F., Cortesi, E., Soref, R. A. “Optical Characteristics of Planar Waveguides in SIMOX Structures”, Mat. Res. Soc. Symp. Proc. 244, 387 (1992)
5. Schmidtchen, J., Schüppert, B., Splett, A., Petermann, K. “Low Loss Rib-Waveguides in SOI”, Mat. Res. Soc. Symp. Proc. 244, 351 (1992)
6. Soref, R. A., Schmidtchen, J., Petermann, K. “Large Single-Mode Rib Waveguides in GeSi- Si and Si-on-SiO2, J. Quantum Electron. 27, 1971 (1991)
7. Zinke, T., Fischer, U., Splett, A., Schüppert, B., Petermann, K. “Comparison of Optical Waveguide Losses in Silicon-on-Insulator”, Electron. Left. 29 (23), 2031 (1993)
8. Splett, A., Zinke, T., Petermann, K., Kasper, E., Kibbel, H., Herzog, H.-J., Presting, H. “Integration of Waveguides and Photodetectors in SiGe for 1.3 μm Operation”, IEEE Photonics Technol. Left. 6 (1), 59 (1994)
9. Voirin, G., Sixt, P., Fullin, E. “Microstructure for Waveguide-to-Photodiode Coupling in Silicon Optoelectronics”, Proc. ECIO '95, Delft 1995, 113, ISBN 90-407-1111-9
10. Hilleringmann, U., Adams, S., Goser, K. “A Silicon Technology for Monolithic Integration of Optical Waveguides, Photodetectors and VLSI CMOS Circuits”, Proc. ISSSE'92, Paris, 1992
11. Wunderlich, S., Schmidt, J. P., Müller, J. “Integration of SiOn Waveguides and Photodiodes on Silicon Substrates”, Appl. Optics 31 (21) 1992
12. Polman, A. “Erbium Implanted Thin Film Photonic Materials”, J. Appl. Phys. 82 (1), 1 (1997)
13. DiMaria, D. J., Kirtley, J. R., Pakulis, E. J., Dong, D. W., Kuan, T. S., Pesavento, F. L., Theis, T. N., Cutro, J. A. “Electroluminescence Studies in Silicon Dioxide Films Containing Tiny Silicon Islands”, J. Appl. Phys. 56 (2), 401 (1984)
14. White, C. W., Budai, J. D., Zhu, J. G., Withrow, S. P., Hembree, D. M., Henderson, D. O., Ueda, A., Tung, Y. S., Mu, R. “Nanocrystals and Quantum Dots Formed by High-Dose Ion Implantation”, Mat. Res. Soc. Symp. Proc. 396, 377 (1996)
15. Neufeld, E., Wang, S., Apetz, R., Buchal, Ch., Carius, R., White, C. W., Thomas, D. K. “Effect of Annealing and H2 Passivation on the Photoluminescence of Si Nanocrystals in SiO2, Thin Solid Films 294, 238 (1997)
16. Mutti, P., Ghislotti, G., Meda, L., Grilli, E., Guzzi, M., Zanghieri, L., Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A. “Photoluminescence Studies of Light Emission from Silicon Implanted and Annealed SiO2 Layers”, Thin Solid Films 276, 88 (1996)
17. Fischer, T., Petrova-Koch, V., Shcheglov, K., Brandt, M. S., Koch, F. “Continuously Tunable Photoluminescence from Si+-implanted and Thermally Annealed SiO2 Films”, Thin Solid Films 276,100 (1996)
18. Kobayashi, T., Endoh, T., Fukuda, H., Nomura, S., Sakai, A., Ueda, Y. “Ge Nanocrystals in SiO2 Films”, Appl. Phys. Left. 71 (9), 1195 (1997)
19. Shimizu-Iwayama, T., Terao, Y., Kamiya, A., Takeda, M., Nakao, S., Saitoh, K. “Visible Photoluminescence from Silicon Nanocrystals Formed in Silicon Dioxide by Ion Implantation and Thermal Processing”, Thin Solid Films 276,104 (1996)
20. Skorupa, W., Yankov, R. A., Tyschenko, I. E., Fröb, H., Böhme, T., Leo, K. “Room-Temperature, Short-Wavelength (400–500 nm) Photoluminescence from Silicon-Implanted Silicon Dioxide Films”, Appl. Phys. Lett 68 (17), 2410 (1996)
21. Skorupa, W., Yankov, R. A., Rebohle, L., Fröb, H., Böhme, T., Leo, K., Tyschenko, I. E.. Kachurin, G. A. “A Study of the Blue Photoluminescence Emission from Thermally-grown, Si+- Implanted SiO2 Films after Short-Time Annealing”, Nucl. Instr. Meth. B120, 106 (1996)
22. Rebohle, L., Tyschenko, I. E., Fröb, H., Leo, K., Yankov, R. A., von Borany, J., Kachurin, G. A., Skorupa, W. “Blue and Violet Photoluminescence from High-Dose Si+- and Ge+-Implanted Silicon Dioxide Layers”, Microelectr. Eng. 36, 107 (1997), Appl. Phys. Lett. 71, 2809 (1997)
23. Min, K. S., Shcheglov, K. V., Yang, C. M., Atwater, H. A., Brongersma, M. L., Polman, A. “The Role of Quantum-Confined Excitons vs Defects in the Visible Luminescence of SiO2 Films Containing Ge Nanocrystals”, Appl. Phys. Lett. 68 (18), 2511 (1996)
24. Min, K. S., Shcheglov, K. V., Yang, C. M., Atwater, H. A., Brongersma, M. L., Polman, A. “Defect-Related Versus Excitonic Visible Light Emission from Ion Beam Synthesized Si Nanocrystals in SiO2, Appl. Phys. Left. 69 (14), 2033 (1996)
25. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., Yamamoto, K. “1.54 μm Photoluminescence of Er3+ doped into SiO2 Films Containing Si Nanocrystals: Evidence for Energy Transfer from Si Nanocrystals to Er 3+, Appl. Phys. Lett. 71 (9), 1198 (1997)
26. Koch, F., Petrova-Koch, V. “Light from Si-Nanoparticle Systems -A Comprehensive View”, J. Non-Cryst. Sol. 198–200, 840 (1996)
27. Hybertsen, M. S., “Absorption and Emission of Light in Nanoscale Silicon Structures”, Phys. Rev. Lett. 72 (10), 1514 (1994)
28. Loni, A., Simons, A. J., Cox, T. I., Calcoft, P. D. J. and Canham, L. T. “Electroluminescent porous silicon device with an external quantum efficiency greater than 0.1% under CW operation”, Electr. Lett. 31(15), 1288 (1995)
29. Hirschman, K. D., Tsybeskov, L., Duftagupta, S. P., Fauchet, P. M. “Silicon-based visible light-emitting devices integrated into microelectronic circuits”, Nature 384, 338 (1996)
30. Apetz, R., Vescan, L., Hartmann, A., Dieker, C., Lüth, H. “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth”, Appl. Phys. Left. 66 (4), 445 (1995)
31. Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y.-H., Poate, J. M., Kimerling, L. C. “Impurity enhancement of the 1.54-μm Er3+ luminescence in silicon”, J. Appl. Phys. 70 (5), 2672 (1991)
32. Stimmer, J., Reittinger, A., Nützel, J. F., Abstreiter, G., Holzbrecher, H., Buchal, Ch. “Electroluminescence of Erbium-Oxygen-Doped Silicon Diodes Grown by Molecular Beam Epitaxy”, Appl. Phys. Lett. 68 (23), 3290 (1996)
33. Neufeld, E., Sticht, A., Brunner, K., Abstreiter, G., Holzbrecher, H., Bay, H., Buchal, Ch. “Influence of Germanium Content on the Photoluminescence of Erbium- and Oxygen- Doped SiGe Grown by Molecular Beam Epitaxy”, 71 (21), 3129 (1997)
34. Neufeld, E., Sticht, A., Brunner, K., Riedl, H., Abstreiter, G., Holzbrecher, H., Bay, H. “Photoand Electroluminescence Characterization of Erbium Doped SiGe”, submitted to J. Vac. Sci. Techn. B
35. Coffa, S., Franzo, G., Priolo, F. “High Efficiency and Fast Modulation of Er-Doped Light Emitting Si Diodes”, Appl. Phys. Lett 69 (14), 2077 (1996)
36. Franzo, G., Coffa, S., Priolo, F., Spinella, C. “Mechanism and Performance of Forward and Reverse Bias Electroluminescence at 1.54 μm from Er-Doped Si Diodes”, J. Appl. Phys. 81 (5), 1 (1997)
37. Palm, J., Gan, F., Zheng, B., Michel, J., Kimerling, L. C. “Electroluminescence of Erbium Doped Silicon”, Phys. Rev. B54, 17603 (1996)
38. Lombardo, S., Campisano, S. U., van den Hoven, G. N., Polman, A. “Erbium in Oxygen-Doped Silicon: Electroluminescence”, J. Appl. Phys. 77 (12), 6504 (1995)
39. Wang, S., Eckau, A., Carius, R., Buchal, Ch. “Hot Electron Impact Excitation Cross-Section of Er3+ and Electroluminescence from Erbium-Implanted Silicon MOS Tunnel Diodes”, Appl. Phys. Lett., 71, 2824 (1997)
40. Leong, D., Harry, M., Reeson, K. J., Homewood, K. P. “A Silicon/Iron-Disilicide Light-Emitting Diode Operating at a Wavelength of 1.5 μm”, Nature 387, 686 (1997)
41. Walker, F. J., McKee, R. A., Yen, H.-W., Zelmon, D. E. “Optical Clarity and Waveguide Performance of Thin Film Perovskites on MgO”, Appl. Phys. Left. 65, 1495 (1994)
42. Gill, D. M., Conrad, C. W., Ford, G., Wessels, B. W., Ho, S. T. “Thin-Film Channel Waveguide Electro-Optic Modulator in Epitaxial BaTiO3, Appl. Phys. Left. 71 (13), 1783 (1997)
43. Beckers, L., Schubert, J., Zander, W., Ziesmann, J., Eckau, A., Leinenbach, P., Buchal, Ch. “Structural and Optical Characterization of Epitaxial Waveguiding BaTiO3 Thin Films on MgO”, J. Appl. Phys. (1998)
44. Soref, R. A., Bennett, B. R. “Electrooptical Effects in Silicon”, J. of Quantum Electr. QE-23 (1), 123 (1987)
45. Fischer, U., Schüppert, B., Petermann, K. “Integrated Optical Switches in Silicon Based on SiGe-Waveguides”, IEEE Photonics Tech. Left. 5 (7), 785 (1993)
46. Alexandrou, S., Wang, C.-C., Hsiang, T. Y., Liu, M. Y., Chou, S. Y. “A 75 GHz Silicon Metal-Semiconductor-Metal Schottky Photodiode”, Appl. Phys. Left. 62 (20), 2507 (1993)
47. Wang, C.-C., Alexandrou, S., Jacobs-Perkins, D., Hsiang, T. Y. “Comparison of the Picosecond Characteristics of Silicon and Silicon-on-Sapphire Metal-Semiconductor-Metal Photodiodes”, Appl. Phys. Left. 64 (26), 3578 (1994)
48. Liu, M. Y., Chen, E., Chou, S. Y. “140-GHz Metal-Semiconductor-Metal Photodetectors on Silicon-on-Insulator Substrate with a scaled Active Layer”, Appl. Phys. Left. 65 (7), 887 (1994)
49. Levine, B. F., Wynn, J. D., Klemens, F. P., Sarusi, G. “1 Gb/s Si High Quantum Efficiency Monolithically Integrable λ = 0.88 μm Detector”, Appl. Phys. Left. 66 (22), 2984 (1995)
50. Ho, J. Y. L., Wong, K. S. “High-Speed and High-Sensitivity Silicon-on-Insulator Metal- Semiconductor-Metal Photodetector with Trench Structure”, Appl. Phys. Lett. 69 (1), 16 (1996)
51. Chen, E., Chou, S. Y. “High-Efficiency and High-Speed Silicon Metal-Semiconductor-Metal Photodetectors Operating in the Infrared”, Appl. Phys. Lett. 70 (6), 753 (1997)
52. Dutta, N. K., Nichols, D. T., Jacobson, D. C., Livescu, G. “Fabrication and Performance Characteristics of High-Speed Ion-Implanted Si Metal-Semiconductor-Metal Photodetector”, Appl. Optics 36 (6), 1180 (1997)
53. RIders, F., Kim, J., Hacke, M., Mesters, S., Buchal, Ch., Mantl, S. “Vertical MSM Photodiodes in Silicon Based on Epitaxial Si/CoSi2/Si”, Thin Solid Films 294, 351 (1997)
54. Mantl, S. “Ion Beam Synthesis of Epitaxial Silicides: Fabrication, Characterization and Applications”, Mat. Sci. Rep. 8, 1 (1992)
55. Mantl, S. “Molecular Beam Allotaxy: A New Approach to Epitaxial Heterostructures”, J. Phys. D: Appl. Phys. 30, 1 (1997)
56. Sagnes, I., Campidelli, Y., Vincent, G., Badoz, P. A. “Tunable Infrared Photoemission Sensor on Si Using Epitaxial ErSi2/Si Heterostructures”, Mat. Sci. and Eng. B21, 312 (1993)
57. Sagnes, I., Campidelli, Y., Chevalier, F., Bodnar, S., Renard, C., Badoz, P. A. “Tunable Infrared Detection Using Epitaxial Silicide/Silicon Heterostructures”, Mat. Res. Soc. Symp. Proc. 320, 65 (1994)
58. Schwarz, C., von Känel, H. “Tunable Infrared Detector with Epitaxial Silicide/Silicon Heterostructures”, J. Appl. Phys. 79 (11), 8798 (1996)
59. Siegert, M., Löken, M., Glingener, Ch., Buchal, Ch. “Optical Coupling Between a Polymeric Waveguide and a MSM-Si-Photodiode”, submitted to Electr. Left.
60. Van, Y. C., Faber, A. J., de Waal, H., Kik, P. G., Polman, A. “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm”, Appl. Phys. Left. 71 (20), 2922 (1997)

Silicon-Based Optoelectronics

  • Ch. Buchal (a1), M. Löken (a1) and M. Siegert (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed