Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T09:58:32.919Z Has data issue: false hasContentIssue false

Silicon Radiation Detectors - Materials and Applications

Published online by Cambridge University Press:  15 February 2011

Jack T. Walton
Affiliation:
Lawrence Berkeley Laboratory
Eugene E. Haller
Affiliation:
Lawrence Berkeley Laboratory Department of Materials Science, University of California, Berkeley, CA 94720U.S.A.
Get access

Abstract

Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed—one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goulding, F. S. and Harvey, B. G., Annual Review of Nuclear Science 25, 167 (1975).Google Scholar
2. Haller, E. E., IEEE Trans. Nucl. Sci. NS-29, No. 3, 1109 (1982).CrossRefGoogle Scholar
3. Trammell, R. C., IEEE Trans. Nucl. Sci. NS-25, No. 2, 910 (1978).Google Scholar
4. Coche, A. and Siffert, P. in: Semiconductor Detectors, Bertolini, G. and Coche, A. eds. (North-Holland, Amsterdam 1968) Ch. 2.Google Scholar
5. Goulding, F. S., Nucl. Instr. and Meth. 43, 1 (1966).Google Scholar
6. Deal, B. E. in: Semiconductor Silicon 1977, Huff, H. R. and Sirtl, E. eds. (The Electrochemical Society, Princeton 1977) p. 276.Google Scholar
7. Kemmer, J., Nucl. Instr. and Meth. 169, 499 (1980).Google Scholar
8. Siffert, P. and Coche, A. in: Semiconductor Detectors, Bertolini, G. and Coche, A. eds. (North-Holland, Amsterdam 1968) Ch. 1.Google Scholar
9. DeKock, A. J. R. in: Handbook on Semiconductors, Vol. 3, Keller, S. P. ed. (North-Holland, Amsterdam 1980) Ch. 4.Google Scholar
10. Fong, A., Walton, J. T., Haller, E. E., Sommer, H. A. and Guldberg, J., Nucl. Instr. and Meth. 199, 623 (1982).Google Scholar
11. Guislain, H. J., Schoenmaeker, W. K. and DeLaet, L. H., Nucl. Instr. and Meth. 101, 1 (1972).CrossRefGoogle Scholar
12. Mayer, J. W. in: Semiconductor Detectors, Bertolini, G. and Coche, A. eds. (North-Holland, Amsterdam 1968) Ch. 5.Google Scholar
13. Cerny, J., Casper, S. W., Bulter, G. W., Brunnader, H., McGrath, R. L. and Goulding, F. S., Nucl. Instr. and Meth. 45, 337 (1966).Google Scholar
14. Wiedenbeck, M. E. and Greiner, D. E., The Astrophysical Journal 239, L139 (1980).Google Scholar
15. Symons, T. J. M. in: Atomic Masses and Fundamental Constants, Nolen, J. and Benenson, W. eds. (Plenum Press, 1980) p. 61.CrossRefGoogle Scholar
16. Laegsgaard, E., Nucl. Instr. and Meth. 162, 93 (1979).Google Scholar
17. Kalbfleisch, G. R., to be published in Nucl. Instr. and Meth.Google Scholar
18. Heijne, E. H. M., Hubbeling, L., Hyams, B. D., Jarron, P., Lazeyras, P., Pinz, F., Vermeulen, J. C. and Wylie, A., Nucl. Instr. and Meth. 178, 331 (1980).Google Scholar
19. Thompson, A. C., Goulding, F. S., Sommer, H. A., Walton, J. T., Hughes, E. B., Rolfe, J. and Zeman, H. D., IEEE Trans. Nucl. Sci. NS- 29, No. 1, 793 (1982).Google Scholar