Skip to main content Accessibility help
×
Home

Silicon based core-shell silicon nanowires for broadband and wide angle antireflection

  • P. Pignalosa (a1) (a2), H. Lee (a3), W. Guo (a2), X. Duan (a4) and Y. Yi (a1) (a2) (a4)...

Abstract

Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm) and wide angle (from normal incidence to 60°) antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si) nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

Copyright

Corresponding author

* e-mail: yys@alum.mit.edu

References

Hide All
1. Li, W. D., Ding, F., Hu, J., and Chou, S. Y., Opt. Exp., 19, 3925 (2011)
2. Berginski, M., Hüpkes, J., Schulte, M., Schöpe, G., Stiebig, H., Rech, B. and Wuttig, M., J. App. Phys, 101, 074903 (2007)
3. Shah, A. V., Vanecek, M., Meier, J., Meillaud, F., Guillet, J., Fischer, D., Droz, C., Niquille, X., Fay, S., Vallat-Sauvain, E., Terrazzoni-Daudrix, V., Bailat, J., J. of Non-Crystalline Solids 338340, 639 (2004)
4. Hu, L. and Chen, G., Nano. Lett., 3249 (2007)
5. Rim, S. B., Zhao, S., Scully, S. R. McGehee, M. D., and Peumans, P., Appl. Phys. Lett., 91, 243501 (2007)
6. Zhao, J., Wang, A., Green, M. A., and Ferrazza, F., Appl. Phys. Lett., 73, 1991 (1998)
7. Chopra, K. L., Paulson, P. D., and Dutta, V., Prog. Photovolt: Res. Appl. 12, 69 (2004)
8. Muller, J., Rech, B., Springer, J., and Vanecek, M., Solar Energy 77, 917 (2004)
9. Mutitu, J. G., Shi, S., Chen, C., Creazzo, T., Barnett, A., Honsberg, C. and Prather, D. W., Opt. Exp., 16, 15238 (2008)
10. Zeng, L., Yi, Y., Hong, C., Liu, J., Duan, X. and Kimerling, L., Appl. Phys. Lett. 89, 111111 (2006)
11. Zhou, D. and Biswas, R., J. Appl. Phys., 103, 093102 (2008)
12. Sai, H., Kanamori, Y., Arafune, K., Ohshita, Y. and Yamaguchi, M., Prog. Photovolt. Res. Appl. 15, 415 (2007)
13. Springer, J., Rech, B., Reetz, W., Muller, J., and Vanecek, M., Solar Energy Materials & Solar Cells 85, 1 (2005)
14. Nagel, J. R. and Scarpull, M. A., Opt. Exp., 18, A139 (2010)
15. Poruba, A., Fejfar, A., Remes, Z., Springer, J., Vanecek, M., Kocka, J., Meier, J., Torres, P., and Shah, A., J. Appl. Phys., 88, 148 (2000)
16. Fahr, S., Rockstuhl, C., and Lederer, F., Appl. Phys. Lett., 92, 171114 (2008)
17. Zeng, L., Bermel, P., Yi, Y., Alamariu, B. A., Broderick, K. A., Liu, J., Hong, C., Duan, X., Joannopoulos, J., and Kimerling, L. C., Appl. Phys. Lett. 93 221105 (2008)
18. Tsai, F., Wang, J., Huang, J., Kiang, Y., and Yang, C. C., Opt. Exp., 18, A207 (2010)
19. Pillai, S., Catchpole, K. R., Trupke, T., and Green, M. A., J. Appl. Phys. 101, 093105 (2007)
20. Catchpole, K. R. and Polman, A., Appl. Phys. Lett., 93, 191113 (2008)
21. Beck, F. J., Polman, A., and Catchpole, K. R., J. Appl. Phys. 105, 114310 (2009)
22. Gao, Di, He, Rongrui, Carraro, Carlo, Howe, Roger T., Yang, Peidong, and Maboudian, Roya, J. Am. Chem. Soc. 127, 45744575 (2005)
23. Sunkara, M. K., Sharma, S., and Miranda, R., Appl. Phys. Lett., 79, 15461548 (2001)
24. Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964)
25. Lombardi, I., Chem. Mater. 18, 988991 (2006)
26. Shingubara, S., Okino, O., Sayama, Y., Sakaue, H., Takahagi, T., Solid-State Electronics. 43, 1143 (1999)
27. Peng, K., Appl. Phys. Lett. 90, 163123 (2007)
28. Peng, K. Q., Yan, Y. J., Gao, S. P. and Zhu, J., Adv. Mater. 14 (16), 1164 (2002)
29. Tsakalakos, L., Balch, J., Fronheiser, J., Shih, M.-Y., LeBoeuf, S. F., Pietrzykowski, M., Codella, P. J., Korevaar, B. A., Sulima, O., Rand, J., Davuluru, A., and Rapolc, U., Journal of Nanophotonics, 1, 013552 (2007)
30. Srivastava, S. K., Kumar, D., Singh, P. K., Kar, M., Kumar, V., Husain, M., Solar Energy Materials and Solar Cells, 94, 1506 (2010)
31. Chiew, Y. L. and Cheong, K. Y., Physica E: Low-Dimensional Systems and Nanostructures, 42, 1338 (2010)
32. Kolb, F. M., Hofmeister, H., Scholz, R., Zacharias, M., Gösele, U., Ma, D. D., and Lee, S.-T., Journal of The Electrochemical Society, 151, G472 (2004)
33. Garnett, E. and Yang, P., Nano. Lett. 10, 10821087 (2010)
34. Prokes, S. M. and Wang, K. L., Mater. Res. Bull. 24, 13 (1999)
35. Wang, N., Tang, Y. H., Zhang, Y. F., Lee, C. S., Lee, S. T., Phys. Rev. B 58, R16024 (1998)
36. Wu, Y. and Yang, P., J. Am. Chem. Soc. 123, 3165 (2001)
37. Zhang, Y. F., Tang, Y. H., Wang, N., Lee, C.S., Bello, I. and Lee, S.T.. Journal of Crystal Growth, 197, 136 (1999)
38. Shi, W. S., Zheng, Y. F., Wang, N., Lee, C. S. and Lee, S. T., Appl. Phys. Lett. 78 (21), 3304 (2001)
39. Pan, Z. W., Dai, Z. R., Xu, L., Lee, S. T. and Wang, Z. L., J. Phys. Chem. B, 105, 2507 (2001)
40. Wang, N., Tang, Y. H., Zhang, Y. F., Lee, C. S., and Lee, S. T., Phys. Rev. B. 58, R16024 (1998)

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed