Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T00:59:52.868Z Has data issue: false hasContentIssue false

Silicide Formation with Tungsten Deposited from W-LPCVD; The Role of Back Surface Conditions

Published online by Cambridge University Press:  25 February 2011

S. -L. Zhang
Affiliation:
Swedish Institute of Microelectronics, P. O. Box 1084, S-164 21 Kista
M. Östling
Affiliation:
Royal Institute of Technology-Electrum, Solid State Electronics, P.O. Box 1298, S-164 28 Kista
U. Smith
Affiliation:
Ericsson Components AB, S-164 81 Kista, Sweden
R. Buchta
Affiliation:
Swedish Institute of Microelectronics, P. O. Box 1084, S-164 21 Kista
Get access

Extract

Tungsten (W) films were deposited on the front surface of float-zone (FZ) Si wafers, from tungsten hexafluoride (WF6) by low pressure chemical vapor deposition (LPCVD). The back surface conditions of the Si wafers was the major concern of this study. Various back surface coatings were investigated, tungsten, thermal SiO2 and LPCVD-Si3N4. Isothermal heat treatments were performed in an argon flow furnace at 760°C for 8 to 30 min. The silicide formation was monitored by Rutherford backscattering spectrometry (RBS). No difference in the silicidation rate was found on the wafers with a back surface oxide layer as compared to that of the reference wafers with no back surface coating. However, for wafers with the back surface covered with Si3N4 or W, a retarded silicidation rate was observed. This phenomenon appeared to be insensitive to the presence of a cap layer (PECVD-SiO2) on the W films before annealing. A model including the behavior of point defects is proposed to provide an explanation to this observation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Grove, A. S., Leistiko, O. Jr, and Sah, C. T., J. Appl. Phys. 35, 2695 (1964).Google Scholar
2 Fahey, P., Griffin, P. B., and Plummer, J. D., Review of Modern Physics 61, 289 (1989).Google Scholar
3 Mizuo, S. and Higuchi, H., J. Electrochem. Soc. 129, 2292 (1982).Google Scholar
4 Mizuo, S. and Higuchi, H., J. Electrochem. Soc. 130, 1942 (1983).Google Scholar
5 Bustillo, J., Chang, C., Haddad, S., and Wang, A., Appl. Phys. Lett. 58, 1872 (1991).Google Scholar
6 Ahn, S. T., Kennel, H. W., Plummer, J. D., and Tiller, W. A., Appl. Phys. Lett. 53, 1593 (1988).CrossRefGoogle Scholar
7 Ahn, S. T., Kennel, H. W., Plummer, J. D., and Tiller, W. A., J. Appl. Phys. 64, 4914 (1988).Google Scholar
8 Ohdomari, I., Konuma, K., Takano, M., Chikyow, T., Kawarada, H., Nakanishi, J., and Ueno, T., Mat. Res. Soc. Symp. Proc. 54, 63 (1986).Google Scholar
9 Hu, S. M., Appl. Phys. Lett. 51, 308 (1987).CrossRefGoogle Scholar
10 Wen, D. S., Smith, P. L., Osburn, C. M., and Rozgonyi, G. A., Appl. Phys. Lett. 51, 1182 (1987).Google Scholar
11 Wen, D. S., Smith, P. L., Osburn, C. M., and Rozgonyi, G. A., J. Electrochem. Soc. 136, 466 (1989).CrossRefGoogle Scholar
12 Honeycutt, J. W. and Rozgonyi, G. A., Appl. Phys. Lett. 58, 1302 (1991).Google Scholar
13 Erlesand, U., Östling, M., Svensson, B. G., and Gas, P., in Proceedings of 14th Nordic Semiconductor Meeting, ed. Hanssen, O. (Århus, Denmark, June 17 – 20, 1990), p. 89.Google Scholar
14 Erlesand, U., östling, M., Svensson, B. G., and Gas, P., Appl. Surf. Sci. 53, 224 (1991).Google Scholar
15 Fahey, P. and Dutton, R. W., Appl. Phys. Lett. 52, 1092 (1988).CrossRefGoogle Scholar
16 Wittmer, M., Fahey, P., Scilla, G. J., and Iyer, S. S., Phys. Rev. Lett. 66, 632 (1991).CrossRefGoogle Scholar
17 Lin, J., Park, K., Batra, S., Banerjee, S., Lee, J., and Lux, G., Appl. Phys. Lett. 58, 2123 (1991).Google Scholar
18 Zheng, L. R., Hung, L. S., and Mayer, J. W., J. Appl. Phys. 58, 1505 (1985).Google Scholar
19 Ohdomari, I., Akiyama, M., Maeda, T., Hori, M., Takebayashi, C., Ogura, A., Chikyo, T., Kimura, I., Yoneda, K., and Tu, K. N., J. Appl. Phys. 56, 2725 (1984).Google Scholar
20 Bindell, J. B., Moller, W. M., and Labuda, E. F., IEEE Trans. Electron Devices ED–27, 420 (1980).Google Scholar
21 Kikuchi, A. and Sugaki, S., J. Appl. Phys. 53, 3690 (1982).Google Scholar
22 Cohen, S. S., Piacente, P. A., Gildenblat, G., and Brown, D. M., J. Appl. Phys. 53, 8856 (1982).Google Scholar
23 Wittmer, M., Ting, C. -Y., and Tu, K. N., Thin Solid Films 104, 191(1983).Google Scholar
24 Wittmer, M. and Tu, K. N., Phys. Rev. B29, 2010 (1984).CrossRefGoogle Scholar
25 Lew, P. W. and Helms, C. R., J. Appl. Phys. 56, 3418 (1984).Google Scholar
26 Revesz, P., Gyimesi, J., and Zsoldos, E., J. Appl. Phys. 54, 1860 (1983).CrossRefGoogle Scholar
27 Zhang, S. -L., Buchta, R., and Östling, M., J. Mater. Res. 6, 1886 (1991).CrossRefGoogle Scholar
28 Zhang, S. -L., Smith, U., Buchta, R., and Östling, M., J. Appl. Phys. 69, 213 (1991).CrossRefGoogle Scholar
29 Baglin, J. E. E., Dempsey, J., Hammer, W., d'Heurle, F. M., Petersson, C. S., and Serrano, C., J. Electron. Mater. 8, 641 (1979).Google Scholar
30 Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).CrossRefGoogle Scholar
31 Oehrlein, G. S., Krafcsik, I., Lindström, J. L., Jaworowski, A. E., and Corbett, J. W., J. Appl. Phys. 54, 179 (1982).Google Scholar
32 Properties of Silicon (INSPEC, The Institute of Electrical Engineers, London, 1988), pp. 256259.Google Scholar
33 Irene, E. A., J. Electron. Mater. 5, 287 (1976).Google Scholar
34 Sekimoto, M., Yoshihara, H., and Ohkubo, T., Vav, J.. Sci. Technol. 21, 1017 (1982).Google Scholar
35 Dunham, S. T., J. Appl. Phys. 71, 685 (1992).Google Scholar
36 Pichler, P. and Orlowski, M., Appl. Phys. Lett. 60, 1205 (1992).Google Scholar
37 EerNisse, E. P., Appl. Phys. Lett. 35, 8 (1979).CrossRefGoogle Scholar