Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T00:06:53.371Z Has data issue: false hasContentIssue false

Silica-Supported Au and Pt Nanoparticles and CO Adsorption

Published online by Cambridge University Press:  01 February 2011

Derrick Mott
Affiliation:
dmott1@binghamton.edu, United States
Jin Luo
Affiliation:
jluo@binghamton.edu, United States
Andrew Smith
Affiliation:
cjzhong@binghamton.edu, United States
Wai-Pan Chan
Affiliation:
cjzhong@binghamton.edu, United States
William Bozza
Affiliation:
cjzhong@binghamton.edu, United States
Anjana Sarkhel
Affiliation:
cjzhong@binghamton.edu, United States
Sara Park
Affiliation:
cjzhong@binghamton.edu, United States
Chuan-Jian Zhong
Affiliation:
cjzhong@binghamton.edu, United States
Get access

Abstract

The understanding of the surface properties of metal nanoparticles is essential for exploiting their unique catalytic properties. This paper reports findings of the preparation of silica-supported Pt and Au nanoparticles and the FTIR characterization of CO adsorption on the supported nanoparticles. The nanoparticles were prepared by both a traditional impregnation method and molecular-capping based synthesis method. By comparing the spectroscopic characteristics of CO adsorption on these catalysts, similarities and differences in CO stretching bands have been identified. The findings are significant because important insights have been gained into the surface binding properties of Au and Pt nanoparticle catalysts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Waszczuk, P., Lu, G. Q., Wieckowski, A., Lu, C., Rice, C., Masel, R. I., Electrochim. Acta. 47, 3637 (2002).Google Scholar
2. Park, K. W., Choi, J. H., Kwon, B. K., Lee, S. A., Sung, Y. E., Ha, H. Y., Hong, S. A., Kim, H., Wieckowski, A., J. Phys. Chem. B 106, 1869 (2002).Google Scholar
3. Paulus, U. A., Endruschat, U., Feldmeyer, G. J., Schmidt, T. J., Bonnemann, H., Behm, R. J., J. Catal. 195, 383 (2000).Google Scholar
4. Junges, U., Schuth, F., Schmid, G., Uchida, Y., Schlogl, R., Ber. Bunsenges. Phys. Chem. 101, 1631 (1997).Google Scholar
5. Che, G., Lakshmi, B. B., Martin, C. R., Fisher, E. R., Langmuir, 15, 750 (1999).Google Scholar
6. Bonnemann, H., Nagabhushana, K. S., J. New Mater. Electrochem. Sys. 7, 93 (2004).Google Scholar
7. Antolini, E., Mater. Chem. Phys. 78, 563 (2003).Google Scholar
8. Haruta, M., Date, M., Appl. Catal. A 222, 427 (2001).Google Scholar
9. Bond, G. C., Catal. Today, 72, 5 (2002).Google Scholar
10. Valden, M., Lai, X., Goodman, D. W., Science 281, 1647 (1998).Google Scholar
11. Chen, M. S., Goodman, D. W., Science, 306, 252 (2004).Google Scholar
12. Chou, J., Franklin, N. R., Baeck, S. H., Jaramillo, T. F., McFarland, E. W., Catal. Lett. 95, 3 (2004).Google Scholar
13. Lou, Y., Maye, M. M., Han, L., Luo, J., Zhong, C. J., Chem. Comm. 5, 473 (2001).Google Scholar
14. Bailie, J. E., Hutchings, G. J., Chem. Comm. 2151 (1999).Google Scholar
15. Luo, J., Maye, M. M., Kariuki, N. N., Wang, L., Njoki, P., Han, L., Schadt, M., Lin, Y., Naslund, H. R., Zhong, C. J., Catal. Today 99, 291 (2005).Google Scholar
16. Kim, C. S., Korzeniewski, C., Anal. Chem. 69, 2349 (1997).Google Scholar
17. Mihut, C., Descorme, C., Duprez, D., Amiridis, M., J. Catal., 212, 125 (2002).Google Scholar
18. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., Whyman, R. J., Chem. Soc. Chem. Comm. 801 (1994).Google Scholar
19. He, T., Zhong, C. J., Luo, J., Maye, M. M., Han, L., Kariuki, N. N., Wang, L., “Metal and alloy nanoparticles and synthesis methods thereof”, U.S. Patent Application filed (9/17/2004).Google Scholar
20. Boccuzzi, F., Chiorino, A., Manzoli, M., Surf. Sci. 454, 942 (2000).Google Scholar
21. Blizanac, B. B., Arenz, M., Ross, P. N., Markovic, N. M., J. Am. Chem. Soc. 126, 10130 (2004).Google Scholar
22. Gold reference catalyst: 51A, Au/TiO2# 02–05, supplied from the World Gold Council.Google Scholar
23. Scott, R. W. J., Sivadinarayana, C., Wilson, O. M., Yan, Z., Goodman, D. W., Crooks, R. M., J. Am. Chem. Soc. 127, 1380 (2005).Google Scholar