Skip to main content Accessibility help

Significant Compositional Changes and Formation of a Ga-O Phase after Oxygen-annealing of Ga-rich CuGaSe2 Films

  • Akihiko Nishio (a1), Akimasa Yamada (a2), Paul. J. Fons (a2), Ralf Hunger (a2), Koji Matsubara (a2), Kakuya Iwata (a2), Shigeru Niki (a2) and Hisayuki Nakanishi (a1)...


CuGaSe2 (CGS) is a promising material for high efficiency thin film solar cells though predicted device performance has not been realized. Understanding the difference in the chemical nature between CuInSe2 (CIS) and CGS is critical for improving Cu (In, Ga) Se2 solar cells with high Ga concentrations. In this work, we have investigated the effects of oxygen-annealing on Ga-rich CGS epitaxial films focusing on compositional changes and secondary phase formations. The photoluminescence (PL) spectrum of Ga-rich films after oxygen-annealing was observed to always change into a spectrum characteristic of CGS grown under Cu-excess conditions. Electron probe micro-analysis (EPMA) measurements indicate the formation of Ga-O after oxygen-annealing. Selective etching of the Ga-O phase showed the composition of the CGS phase became close to stoichiometric. The oxygen-annealed films showed multiple pits ∼ 100 nm in depth and ∼ 2.5 μm in width. The Ga-O phase is founded in a layer formed on the surface of the CGS phase and in a columnar form rising from the bottom of the pits to the film/substrate interface. The above results suggest that excess Ga in Ga-rich CGS tends to react with oxygen to form Ga-O, thus the composition of the remaining CGS approaches stoichiometry consistent with the changes observed in PL.



Hide All
1. Hedstorm, J., Ohlsem, H., Bodegard, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M., and schock, H. W., Proc. 23rd IEEE Photovoltaic Specialists Conf., Louisville 1993, pp.364
2. Contreras, M. A., Egass, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F. and Noufi, R., Prog. Photovoltaic (1999)
3. Herberholtz, R., Nadenau, V., Ruhle, U., Koble, C., Schock, H. W. and Dimmler, B., Sol. Energy Matel. Sol. Cells, 49 (1997) 227
4. Nadenau, V., Hariskos, D. and Schock, H. W., Proc. of the 14th EC PVSEC, Barcelona (1997) 1250
5. Yamada, A., Makita, Y., Niki, S., Obara, A., Fons, P. and Shibata, H., Microelectron J. 27 (1996) 53
6. Yamada, A., Makita, Y., Niki, S., Obara, A., Fons, P., Shibata, H., Kawai, M., Chichibu, S. and Nakanishi, H., J. Appl. Phys. 79 (1996) 4318
7. Niki, S., Makita, Y., Yamada, A., Obara, A., Igarashi, O., Misawa, S., Kawai, M., Nakanishi, H., Taguchi, Y. and Kutsuwada, N., Sol. Energy. Matel. Sol. Cells, 35 (1994) 141
8. Niki, S., Fons, P. J., Lacroix, Y., Iwata, K., Yamada, A., Oyanagi, H., Uchino, M., Suzuki, Y., Ishibashi, S., Ohdaira, T. and Yokokawa, H., J. Crystal Growth 201 (1999) 1061
9. Niki, S., Kim, I., Fons, P. J., Shibata, H., Yamada, A., Oyanagi, H., Kurafuji, T., Chichibu, S. and Nakanishi, H., Sol. Energy Matel. Sol. Cells 49 (1997) 319
10. Yamada, A., Fons, P. J., Niki, S. and Oyanagi, H., Jpn. J. Appl. Phys. 38 (1999) L96


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed