Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-04T04:00:31.337Z Has data issue: false hasContentIssue false

SiGe pMOSFETs Fabricated on Limited Area SiGe Virtual Substrates

Published online by Cambridge University Press:  11 February 2011

Andrew Waite
Affiliation:
University of Southampton, Dept. of Electronics and Computer Science, Southampton, SO171BJ, United Kingdom.
Urs Straube
Affiliation:
University of Southampton, Dept. of Electronics and Computer Science, Southampton, SO171BJ, United Kingdom.
Neil Lloyd
Affiliation:
University of Southampton, Dept. of Electronics and Computer Science, Southampton, SO171BJ, United Kingdom.
Sally Croucher
Affiliation:
University of Southampton, Dept. of Electronics and Computer Science, Southampton, SO171BJ, United Kingdom.
Yue Teng Tang
Affiliation:
University of Southampton, Dept. of Electronics and Computer Science, Southampton, SO171BJ, United Kingdom.
Bifeng Rong
Affiliation:
University of Southampton, Dept. of Electronics and Computer Science, Southampton, SO171BJ, United Kingdom.
Alan Evans
Affiliation:
University of Southampton, Dept. of Electronics and Computer Science, Southampton, SO171BJ, United Kingdom.
Tim Grasby
Affiliation:
University of Warwick, Dept. of Physics, Coventry, CV47AL, United Kingdom.
Terry Whall
Affiliation:
University of Warwick, Dept. of Physics, Coventry, CV47AL, United Kingdom.
Evan Parker
Affiliation:
University of Warwick, Dept. of Physics, Coventry, CV47AL, United Kingdom.
Get access

Abstract

Silicon germanium pMOSFETs with channel lengths down to 0.4m have been fabricated on limited area silicon germanium virtual substrates. The devices have a 5nm thick Si0.3Ge0.7 active layer grown by MBE on top of relaxed Si0.7Ge0.3 virtual substrate. Virtual substrates were grown on top of 10μm square silicon pillars defined by etching trenches around their perimeter into the original silicon substrate. This limits the area of the growth zone, which in turn promotes the relaxation of the virtual substrate. Electrical measurements on 2μm long channel devices show that the maximum mobility in the strained SiGe devices is 211cm2V-1cm-1, compared to 104cm2V-1cm-1 for silicon reference devices. This increase in hole mobility increases the current drive of 0.4m devices measured at Vgt=-2V, Vds=-2.5V from 154μA/m to 192μA/μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Leitz, C. W., Currie, M. T., Lee, M. L., Cheng, Z. Y., Antoniadis, D. A., Fitzgerald, E. A., Appl. Phys. Lett, 79, 4246, 2001.Google Scholar
2. Lee, M. L., Leitz, C. W., Cheng, Z., Pitera, A. J., Langdo, T., Currie, M. T., Taraschi, G., Fitzgerald, E. A., Antoniadis, D. A., Appl. Phys. Lett, 79, 3344, (2001).Google Scholar
3. Hoeck, G., Kohn, E., Rosenblad, C., von Kaenel, H., Herzog, H. J., Koenig, U., Appl. Phys. Lett, 76, 3920, (2000).Google Scholar
4. Koenig, U., Zeuner, M., Hoeck, G., Hackbarth, T., Glueck, M., Ostermann, T., Saxarra, M.. Solid-State Electronics, 43, 1383, (1999).Google Scholar
5. Koester, S. J., IEEE Electron Device Lett, 21, 110, (2000).Google Scholar
6. Sugii, N., Nakagawa, K., Yamaguchi, S., Miyao, M., Appl. Phys. Lett, 75, 2948, (1999).Google Scholar
7. Sugii, N., Hisamoto, D., Washio, K., Yokoyama, N., Kimura, S., Tech. Dig. Int. Electron Devices Meet, (2001).Google Scholar
8. Cheng, Z. Y., Currie, M. T., Leitz, C. W., Taraschi, G., Fitzgerald, E. A., Hoyt, J. L., Antoniadas, D. A., IEEE Trans. Electron Devices, 22, 321, (2001).Google Scholar
9. Welser, J., Hoyt, J. L., Gibbons, J. F., IEEE Electron Device Lett, 15, 100, (1994).Google Scholar
10. Rim, K., Welser, J., Hoyt, J. L., Gibbons, J. F., Tech. Dig. Int. Electron Devices Meet, 517, (1995).Google Scholar
11. Hammond, R., Phillips, P. J., Whall, T. E., Parker, E. H. C., Garf, T., von Kaenel, H., Shields, A. J., Appl. Phys. Lett, 71, 2517, (1997).Google Scholar
12. Fitzgerald, E. A., Kirchner, P. D., Proano, R., Pettit, G D., Woodall, J. M., Appl. Phys. Lett, 52, 1496, (1988).Google Scholar
13. Chen, K., Hu, C., Fang, P., Lin, M. R., Wollesen, D., IEEE Trans. Elec. Dev., 44, 1951, (1987).Google Scholar