Skip to main content Accessibility help
×
Home

SiC-based 1D Nanostructures

  • Maelig Ollivier (a1) (a2) (a3), Laurence Latu-Romain (a1), Mickaël Martin (a1), Arnaud Mantoux (a3) and Edwige Bano (a2)...

Abstract

Thanks to an original approach based on the carburization of silicon nanowires, silicon carbide-based one dimensional nanostructures – SiC nanotubes, Si-SiC core-shell nanowires and SiC nanowires – have been synthesized. The original process, which relies on controlling the out-diffusion of Si atoms through SiC, can be monitored by the temperature, the pressure and the time of carburization. These SiC-based 1D nanostructures have been characterized by SEM, FIB-SEM and TEM microscopies and also Raman spectroscopy. Bio-nano-sensors, nano-Field-Effect-Transistors (nano-FETs) or gas sensors may be some applications for these nanostructures.

Copyright

Corresponding author

References

Hide All
1 Lu, W. and Lieber, C.M.. Nanoelectronics from the bottom up. Nature Materials, 6, November 2007.
2 Morkoç, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., and Burns, M.. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor-device technologies. Journal of Applied Physics, 76(3):13631398, AUG 1 1994.
3 Saddow, S.. Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications. Elsevier Science, 2011.
4 Yakimova, R., Steinhoff, G., Petoral, R.M. Jr., Vahlberg, C., Khranovskyy, V., Yazdi, G.R., Uvdal, K., and Lloyd Spetz, A.. Novel material concepts of transducers for chemical and biosensors. Biosensors and Bioelectronics, 22:27802785, 2007.
5 Hilder, T.A. and Hill, J.M.. Theoretical comparison of nanotube materials for drug delivery. Micro & Nano Letters, 3(1):1824, MAR 2008.
6 Jang, C.O., Kim, T.H., Lee, S.Y., Kim, D.J., and Lee, S.K.. Low-resistance ohmic contacts to SiC nanowires and their applications to field-effect transistors. Nanotechnology, 19(345203), 2008.
7 Rogdakis, K., Bano, E., Montes, L., Bechelany, M., Cornu, D., and Zekentes, K.. Rectifying source and drain contacts for effective carrier transport modulation of extremely doped SiC nanowire FETs. IEEE Transactions on Nanotechnology, 10(5):980984, SEP 2011.
8 Senesky, D.G., Jamshidi, B., Cheng, K.B., and Pisano, A.P.. Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: A review. IEEE Sensors Journal, 9(11):14721478, NOV 2009.
9 Dai, H., Wong, E.W., Lu, Y.Z., Fan, S., and Lieber, C.M.. Synthesis and characterization of carbide nanorods. Nature, 375:769772, 1995.
10 Pan, Z., Lai, H.L., Au, Frederick C.K., Duan, X., Zhou, W., Shi, W., Wang, N., Lee, C.S., Wong, N.B., Lee, S.T., and Xie, S.. Oriented silicon carbide nanowires: Synthesis and field emission properties. Advanced Materials, 12(16), August 2000.
11 Chiu, S.C. and Li, Y.Y.. SiC nanowires in large quantities: Synthesis, band gap characterization, and photoluminescence properties. Journal of Crystal Growth, 311:10361041, 2009.
12 Wang, D.H., Xu, D., Wang, Q., Hao, Y.J., Jin, G.Q., Guo, X.Y., and Tu, K.N.. Periodically twinned SiC nanowires. Nanotechnology, 19(215602), 2008.
13 Chen, J., Pan, Y., and Wu, R.. Growth mechanism of twinned SiC nanowires synthesized by a simple thermal evaporation method. Physica E, 42:23352340, 2010.
14 Gu, X., Qiang, Y., and Zhao, Y.. Synthesis, structural and electrical properties of SiC nanowires via a simple CVD method. Journal of Materials Science - materials in electronics, 23(5):10371040, MAY 2012.
15 Zekentes, K. and Rogdakis, K.. SiC nanowires: material and devices. Journal of Physics D: Applied Physics, 44, 2011.
16 Keller, N., Pham-Huu, C., Ehret, G., Keller, V., and Ledoux, M.J.. Synthesis and characterisation of medium surface area silicon carbide nanotubes. Carbon, 41:21312139, 2003.
17 Pei, L.Z., Tang, Y.H., Chen, Y.W., Guo, C., Li, X.X., Yuan, Y., and Zhang, Y.. Preparation of silicon carbide nanotubes by hydrothermal method. Journal of Applied Physics, 99(114306), 2006.
18 Ollivier, M., Latu-Romain, L., Martin, M., David, S., Mantoux, A., Bano, E., Soulière, V., Ferro, G., and Baron, T.. Si-sic core-shell nanowires. Journal of Crystal Growth, 363(0):158163, 2013.
19 Latu-Romain, L., Ollivier, M., Thiney, V., Chaix-Pluchery, O., and Martin, M.. Silicon carbide nanotubes growth: an original approach. Journal of Physics D: Applied Physics, 46(9):092001, 2013.
20 Nakashima, S. and Harima, H.. Raman investigation of SiC polytypes. Physica Status Solidi a, 162(39):3964, 1997.

Keywords

SiC-based 1D Nanostructures

  • Maelig Ollivier (a1) (a2) (a3), Laurence Latu-Romain (a1), Mickaël Martin (a1), Arnaud Mantoux (a3) and Edwige Bano (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed