Skip to main content Accessibility help
×
Home

SiC Bipolar Power Transistors - Design and Technology Issues for Ultimate Performance

  • Mikael Ostling (a1), Martin Domeij (a2), Carina Zaring (a3), Andreij Konstantinov (a4), Reza Ghandi (a5), Benedetto Buono (a6), Anders Hallen (a7) and Carl-Mikael Zetterling (a8)...

Abstract

Silicon carbide (SiC) semiconductor devices for high power are becoming more mature and are now commercially available as discrete devices. Schottky diodes have been on the market since a few years but also bipolar junction transistors (BJTs), JFETs and MOSFETs are now reaching the market. The interest is rapidly growing for these devices in high power and high temperature applications. The BJTs have low conduction losses, fast switching capability, operate in normally-off mode, have high radiation hardness, and can handle high power density.

This paper will review the current state of the art in active switching device performance with special emphasis on BJTs. Device performance has been demonstrated over a wide temperature interval. A very important feature in high power switch applications is the low on-resistance of a device. Better material quality and epi processes suppress the amount of basal plane dislocations to avoid stacking fault formation generated during high current injection. This has long been a concern for bipolar SiC devices but several research reports and long term reliability measurements of pn-junctions show that the bipolar degradation problem can be solved by a fine-tuned epitaxial technique. A discussion on surface passivation control is included.

Finally, an example of a power switching module is given also demonstrating the excellent paralleling capability of BJTs.

Copyright

References

Hide All
1 Zetterling, C.-M., Ed., “Process technology for silicon carbide devices,” in EMIS processing series, IEE, 2002.
2 Östling, M., Koo, S.-M., Domeij, M., Danielsson, E., and Zetterling, C.-M., “SiC Device Technologies,” in Encyclopedia of RF and Microwave Engineering: John Wiley & Sons, Inc., 2005, pp. 46134619
3 Huang, C-F., Kan, C-L., Wu, T-L., Lee, M-C., Liu, Y-Z., Lee, K-Y., and Zhao, F., IEEE Electron Device Letters, vol. 30, no. 9, (2009) pp. 957959.
4 Ghandi, R., Lee, H-S., Domeij, M., Buono, B., Zetterling, C-M., and Östling, M., IEEE Electron Device Letters, vol. 29, no. 10 (2008) pp.11351137.
5 Lee, H-S., Domeij, M., Zetterling, C-M., Östling, Mikael, Allerstam, F., and Sveinbjörnsson, E.Ö., IEEE Electron Device Letters, vol. 28, no. 11, (2007) pp. 10071009.
6 Zhang, J., Alexandrov, P., Zhao, J.H., Materials Science Forum, v 600–603, (2009) pp. 11551158.
7 Noborio, M., Suda, J., and Kimoto, T., IEEE Electron Device Letters, vol. 30, no. 8 (2009) pp. 831833.
8 Cheng, L., Sankin, I., Bondarenko, V., Mazzola, M. S., Scofield, J. D., Sheridan, D. C., Martin, P., Casady, J. R. B., and Casady, J. B., Materials Science Forum Vols. 600–603 (2009) pp 10551058.
9 Veliadis, V., McNutt, T., Snook, M., Hearne, H., Potyraj, P., and Scozzie, C., IEEE Electron Device Letters, vol. 29, no. 10, (2008) pp.11321134.
10 Jonas, C., Cappel, C., Burk, A., Zhang, Q., Callanan, R., Agarwal, A., Geil, B., and Scozzie, C., Journal of Electronic Materials, vol. 37, no. 5, (2008) pp. 662665.
11 Li, Y., Alexandrov, P., and Zhao, J. H., IEEE Transactions on Electron Devices, vol. 55, no. 8 (2008) pp.18801886.
12 Veliadis, V., Snook, M., McNutt, T., Hearne, H., Potyraj, P., Lelis, Aivars, and Scozzie, C., IEEE Electron Device Letters, vol. 29, no. 12 (2008) pp.13251327.
13 Ritenoura, A., Bondarenko, V., Kelley, R., and Sheridan, D. C., Materials Science Forum Vols. 615–617 (2009) pp. 715718.
14 Hull, B. A., Jonas, C., Ryu, S-H, Das, M., O'Loughlin, M., Husna, F., Callanan, R., Richmond, J., Agarwal, A., Palmour, J. and Scozzie, C., Materials Science Forum Vols. 615–617 (2009) pp. 749752.
15 Nonaka, K., Horiuchi, A., Negoro, Y., Iwanaga, K., Yokoyama, S., Hashimoto, H., Sato, M., Maeyama, Y., Shimizu, M. and Iwakuro, H., Materials Science Forum Vols. 615–617 (2009) pp. 821824.
16 Zhang, J., Fursin, L., Li, X., Wang, X., Zhao, Jian H., VanMil, B. L., M-Ward, R. L., Eddy, C. R. Jr, and Gaskill, D. K., Materials Science Forum Vols. 615–617 (2009) pp. 829832.
17 Sheridan, D.C., Ritenour, A., Bondarenko, V., Burks, P., and Casady, J.B., Proceeding of 21st International Symposium on Power Semiconductor Devices & IC's, (2009) pp. 335338.
18 Zhang, Q., Burk, A., Husna, F., Callanan, R., Agarwal, A., Palmour, J., Stahlbush, R., and Scozzie, C., Proceeding of 21st International Symposium on Power Semiconductor Devices & IC's, (2009), pp. 339342.
19 Matochaa, K., Stumb, Z., Arthurc, S., Dunned, G. and Stevanovic, L., Materials Science Forum Vols. 600–603 (2009) pp 11311134.
20 Ryu, S.-H., Krishnaswami, S., O'Loughlin, M., Richmond, J., Agarwal, A., Palmour, J., and Hefner, A.R., IEEE Electron Device Letters, vol. 25, p. 556, 2004.
21 Ryu, S.-H., Agarwal, A., Richmond, J., Das, M., Lipkin, L., Palmour, J., Saks, N., and Williams, J., Materials Science Forum Vols. 389–393 (2002) pp. 11951198.
22 Tan, J., Cooper, J. A. Jr, and Melloch, M. R., IEEE Electron Device Letters, vol. 19, (1998), p. 487.
23 Zhang, J., Zhao, J. H., Alexandrov, P., and Burke, T., Electronics Letters, vol. 40 (2004) p. 1381.
24 Balachandran, S., , Li. C., Losee, P.A., Bhat, I.B., and Chow, T. P., Proceeding of 19th International Symposium on Power Semiconductor Devices & IC's, (2007), pp. 293296.
25 Zhao, J. H., Tone, K., Alexandrov, P., Fursin, L., and Weiner, M., IEEE Electron Device Letters, vol. 24 (2003) p. 81.
26 Zhao, J. H., Alexandrov, P., Zhang, J., and Li, X., IEEE Electron Device Letters, vol. 25 (2004) p. 474.
27 Domeij, M., Zaring, C., Konstantinov, A.O., Nawaz, M., Svedberg, J-O., Gumaelius, K., Keri, I., Lindgren, A., Hammarlund, B., Östling, M., Reimark, M., Materials Science Forum Vols. 645–648 (2010) pp 10331036
28 Ghandi, R., Buono, B., Domeij, M., Malm, G., Zetterling, C.-M. and Östling, M., IEEE Electron Device Letters, vol. 30 (11) (2009) p. 11701172.
29 Porter, L.M., “Thermal Stability and Defects in Contacts to Silicon Carbide,” in Wide Band Gap Materials and New Developments, Syväjärvi, M. and Yakimova, R., eds. (Research Signpost, Kerala, India) pp. 187208, 2006
30 Lundberg, N. and Östling, M., Solid-State Electronics, vol. 39, pp. 15591565, 1996
31 Ghandi, R., Domeij, M., Esteve, R., Buono, B., Schoner, A., Han, J., Dimitrijev, S., Reshanov, S.A., Zetterling, C.-M., Ostling, M., Materials Science Forum, vols. 645–648 (2010) pp 661664.
32 Lee, H.-S., Domeij, M., Zetterling, C.M., Östling, M., Allerstam, F., and Sveinbjörnsson, E.Ö., IEEE Electron Device Lett, Vol. 28, No. 11, p 1007 (2007)
33 Nawaz, M., Zaring, C., Onoda, S., Ohshima, T. and Östling, M., Proceedings of 67th Device Research Conference, The Pennsylvania State University, University Park, PA, June 22-24 2009, p. 279280
34 Cartiglia, N., Dorfan, D.E., Pitzl, D., Rahn, J., Rowe, W.A., Sadrozinski, H.F.-W., Spencer, E.N., and Wilder, M., Conf. Rec. 1992 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.92CH3232-6), p 819–21 vol.2, (1992)
35 Sutton, A.K., Haugerud, B.M., Prakash, A.P.G., Jun, B., Cressler, J.D., Marshall, C., Marshall, P., Ladbury, R., Guarin, F., and Joseph, A.J., IEEE Trans. Nucl. Science, 52, p. 2358 (2005)
36 Hallén, A., Nawaz, M., Zaring, C., Usman, M., Domeij, M., and Östling, M., IEEE Electron Device Letters, In press.
37 Skowronski, M. and Ha, S.: J. Appl. Phys. Vol. 99 (2006) p. 011101.
38 Konstantinov, A., Domeij, M., Zaring, C., Keri, I., Svedberg, J.-O., Gumaelius, K., Östling, M. and Reimark, M.. Materials Science Forum vols. 645–648 (2010) pp 10571060.
39 Sumakeris, J.J., Bergman, J.P., Das, M.K., Hallin, C., Hull, B.A., Janzén, E., Lendenmann, H., O'Loughlin, M.J., Paisley, M.J., Ha, S.Y., Skowronski, M., Palmour, J.W. and Carter, C.H. Jr. Materials Science Forum vols. 527–529 (2006) pp 141146.
40 Kallinger, B., Thomas, B. and Friedrich, J.. Materials Science Forum Vols. 600–603 (2009) pp. 143146.
41 Franke, W.-T. and Fuchs, F.W, 13th European Conference on Power Electronics Power Electronics and Applications, 2009. EPE '09. (p. 110)
42www.transic.com (http://www.transic.com/index.php/news/78-transic-successfully-designs-sic-power-modules-for-high-power-applications) 2009

Keywords

SiC Bipolar Power Transistors - Design and Technology Issues for Ultimate Performance

  • Mikael Ostling (a1), Martin Domeij (a2), Carina Zaring (a3), Andreij Konstantinov (a4), Reza Ghandi (a5), Benedetto Buono (a6), Anders Hallen (a7) and Carl-Mikael Zetterling (a8)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed