Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-19T05:19:29.674Z Has data issue: false hasContentIssue false

Si nanowire-gold nanoparticles heterostructures for surface enhanced Raman spectroscopy

Published online by Cambridge University Press:  18 July 2013

Yuan Li
Affiliation:
Metallurgical and Materials Engineering Department, Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, U.S.A.
John C. Dykes
Affiliation:
REU, Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, U.S.A
Nitin Chopra*
Affiliation:
Metallurgical and Materials Engineering Department, Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, U.S.A. Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, U.S.A.
*
*Corresponding Author E mail: nchopra@eng.ua.edu, Tel: 205-348-4153, Fax: 205-348-2164
Get access

Abstract

Here, we present a method for the fabrication of silicon (Si) nanowires and Si nanowire-gold nanoparticles (AuNPs) heterostructures for surface-enhanced Raman scattering (SERS) effect. Branched Si nanowires were grown in atmospheric pressure chemical vapor deposition (CVD) process. Further decoration of these nanowires was achieved by a galvanic deposition of gold followed by annealing procedure. This resulted in Si nanowires-AuNPs heterostructures with controlled size and inter-particle spacing. Furthermore, the fabricated heterostructures were studied for Raman signal enhancement of the low concentration (∼10-6 M) dye (Rhodamine 6G, R6G). It was observed that heterostructuring of SiNWs with AuNPs led to improvement of R6G signals as compared to AuNPs dispersed on flat Si substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Peng, K. Q., and Lee, S. T., Adv. Mater. 23, 198 (2011).CrossRefGoogle Scholar
Schmidt, V., Wittemann, J. V., Senz, S., and Gösele, U., Adv. Mater. 21, 268 (2009).Google Scholar
Cui, Y., Wei, Q., Park, H., and Lieber, C. M., Science, 293, 1289 (2001).CrossRefGoogle Scholar
Li, Z., Chen, Y., Li, X., Kamins, T. I., Nauka, K., and Williams, R. S., Nano Lett. 4, 245 (2004).CrossRefGoogle Scholar
Lv, M., Su, S., He, Y., Huang, Q., Hu, W., Li, D., and Lee, S. T., Adv. Mater. 22, 5463 (2010).CrossRefGoogle Scholar
Leng, W., Yasseri, A. A., Sharma, S., Li, Z., Woo, H. Y., Vak, D., and Kelley, A. M., Anal. Chem. 78, 6279 (2006).CrossRefGoogle Scholar
Leng, W., and Kelley, A. M., J. Am. Chem. Soc. 128, 3492 (2006).CrossRefGoogle Scholar
He, Y., Su, S., Xu, T., Zhong, Y., Zapien, J. A., Li, J., and Lee, S. T., Nano Today, 6, 122 (2011).CrossRefGoogle Scholar
Zhang, B., Wang, H., Lu, L., Ai, K., and Cheng, X., Adv. Funct. Mater. 18, 2348 (2008).CrossRefGoogle Scholar
Peng, Z., Hu, H., Utama, M. I. B., Wong, L. M., Ghosh, K., Chen, R., and Xiong, Q., Nano Lett. 10, 3940 (2010).CrossRefGoogle Scholar
Peng, Z., Hu, H., Wang, S., Shen, Z., and Xiong, Q., Am. Inst. Phys. Conf. Ser. 1267, 53 (2008).Google Scholar
Baik, S. Y., Cho, Y. J., Lim, Y. R., Im, H. S., Jang, D. M., Myung, Y., and Kang, H. S., ACS nano, 6, 2459 (2012).CrossRefGoogle Scholar
Schmidt, M. S., Hübner, J., and Boisen, A., Adv. Mater. 24 OP11 (2012).Google Scholar
Hu, M., Ou, F. S., Wu, W., Naumov, I., Li, X., Bratkovsky, A. M., and Li, Z., J. Am. Chem. Soc. 132 12820 (2010).CrossRefGoogle Scholar
Christiansen, S. H., Becker, M., Fahlbusch, S., Michler, J., Sivakov, V., Andrä, G., and Geiger, R., Nanotechnology, 18 03550 (2007).CrossRefGoogle Scholar
Dick, K. A., Deppert, K., Larsson, M. W., Mårtensson, T., Seifert, W., Wallenberg, L. R., and Samuelson, L., Nat. Mater. 3, 380 (2004).CrossRefGoogle Scholar
Gentile, P., David, T., Dhalluin, F., Buttard, D., Pauc, N., Den Hertog, M., Ferret, P., and Baron, T.. Nanotechnology 19, 125608 (2008).CrossRefGoogle Scholar
Sayed, S. Y., Wang, F., Malac, M., Meldrum, A., Egerton, R. F., and Buriak, J. M., ACS nano, 3, 2809 (2009).CrossRefGoogle Scholar
Sayed, S. Y., Buriak, J., Wang, D., Wang, F., Li, P., and Malac, M., Cryst. Eng. Comm. 14, 5230 (2012).CrossRefGoogle Scholar
Luo, P., Li, C., and Shi, G., Phys. Chem. Chem. Phys. 14, 7370 (2012).Google Scholar
Gunawidjaja, R., Kharlampieva, E., Choi, I., and Tsukruk, V. V., small 5, 2460 (2009).CrossRefGoogle Scholar
Halas, N. J., Lal, S., Link, S., Chang, W. S., Natelson, D., Hafner, J. H., and Nordlander, P., Adv Mater. 24, 4842 (2012).CrossRefGoogle Scholar