Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T19:43:41.200Z Has data issue: false hasContentIssue false

Shape Transition of InAs Islands on InP (111)A

Published online by Cambridge University Press:  10 February 2011

Hanxuan Li
Affiliation:
Department of Electrical & Computer Engineering, Duke University, Durham, NC27708-0291
Theda Daniels-Race
Affiliation:
Department of Electrical & Computer Engineering, Duke University, Durham, NC27708-0291
Mohamed-Ali Hasan
Affiliation:
Department of Electrical & Computer Engineering, The University of North Carolina, Charlotte, NC 28223
Get access

Abstract

Atomic force microscopy (AFM) reveals that InAs islands grown on InP (111)A, as they grow in size, undergo a shape transition. Below a critical size of around 30 nm, round-shaped quantum dots form, while above this size they grow in the shape of triangles, reflecting the symmetry of the (111) substrates. The edges of triangular islands are aligned along the three equivalent {110} directions of the InP (111) surface. The triangular islands grow laterally much faster than vertically, indicating the aspect ratio decrease of the islands with increasing InAs coverage. Our results provide a better understanding of the self-organization behaviors of InAs on InP (111)A.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Daruka, I., Tersoff, J., and Barabashi, A.-L., Phys. Rev. Lett. 82, p. 2,753 (1999).Google Scholar
2 Georgsson, K., Carlsson, N., Samuelson, L., and Seifert, W., and Wallenberg, L. R., Appl. Phys. Lett. 67, p. 2,981 (1995).Google Scholar
3 Jacobsen, J., Jacobsen, K. W., Stoltze, P., and Nørskov, J. K., Phys. Rev. Lett. 74, p. 2,295 (1995).Google Scholar
4 Norman, A. G., Ahrenkiel, S. P., Moutinho, H., and Al-Jassim, M. M., Appl. Phys. Lett. 73, p. 1,844 (1998).Google Scholar
5 Li, H., Wu, J., Wang, Z. and Daniels-Race, T., Appl. Phys. Lett. 75, p. 1,173 (1999).Google Scholar
6 Yoon, S., Moon, Y., Lee, T., Yoon, E., and Kim, Y. D., Appl. Phys. Lett. 74, p. 2,029 (1999).Google Scholar
7 Lobo, C. and Leon, R., J. Phys. Lett. 83, p. 4,168 (1998).Google Scholar
8 Brune, Marald, Romainczyk, C., Roder, M. & Kern, K., Nature 369, p. 469 (1994).Google Scholar
9 Springholz, G., Holy, V., Pinczolits, M., and Bauer, G., Science 282, p. 734 (1998).Google Scholar
10 Guha, S., Madhukar, A., and Rajkumar, K. C., Appl. Phys. Lett. 57, p. 2,110 (1990).Google Scholar
11 Orr, B. G., Kessler, D., Snyder, C. W., and Sander, L., Europhys. Lett. 19, p. 33 (1992).Google Scholar
12 Ratsch, C. and Zangwill, A., Surf. Sci. 293, p. 123 (1993).Google Scholar
13 Drucker, J.,Phys. Rev. B 48, p. 18,203 (1993)Google Scholar
14 Medeiros-Ribeiro, G. et al. , Science 279, p. 353 (1998);Google Scholar