Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-19T09:00:28.723Z Has data issue: false hasContentIssue false

Shape Memory and Magnetostrictive Materials for Mems

Published online by Cambridge University Press:  10 February 2011

Manfred Wuttig
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742-2115, USA
Eckhard Quandt
Affiliation:
Institut für Materialforschung I, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, GERMANY
Alfred Ludwig
Affiliation:
Institut für Materialforschung I, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, GERMANY
Bernhard Winzek
Affiliation:
Institut für Materialforschung I, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, GERMANY
Get access

Abstract

Ferroic materials are ideally suited for actuators in MEMS applications. Ferro- elastic materials, i.e. shape memory alloys (SMAs), produce a significant, o. o. 104 microstrain, phase transformation induced thermoelastic eigenstrain. Rare earth based ferromagnetic materials possess large, o.o. 103 microstrain, saturation magnetostriction which can be developed at fields of the order of mT readily achieved in MEMS geometries. This paper discusses the essentials of the thermoelastic stress evolution in SMA/Substrate bimorphs and of the development of rare earth based ferromagnetic multilayers. SMA actuationunder the constraint of a substrate and the optimization of the multilayers are emphazized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Quandt, E., Holleck, H., “Transducer and protective PVD- films for applications in microsystem components”, Proc. Micro Mat'97, Berlin, Germany, pp. 129143, (1997); E. Quandt, Proc. of SPIE Vol. 3514, 1998, pp 136–146. Vol. 3514, 1998, .Google Scholar
[2] Hua, Z. S., Su, C. M. and Wuttig, Manfred, Damping and Interface Constraint in NiTi Films, Proc. Symp. on Damping in Multiphase Inorganic Materials Bhagat, R. B., Ed., AMS, Metals Park, OH, (1993), pp. 165 Google Scholar
[3] Mathews, S. A., Wuttig, Manfred and Su, Quanmin, The Effect of Substrate Constraint on the Martensitic Transformation of Ni- Ti Thin Films, Met. Trans. 27A, 2859 (1996)Google Scholar
[4] Hua, S. Z., Su, C. M. and Wuttig, Manfred, Transformation Induced Stress in SMA Thin Films, MRS Symp. Proc. on Thin Films- Stress and Mechanical Properties, 308, 525 (1993)Google Scholar
[5] Stoney, G. G., Proc. Roy. Soc. London A82, 172 (1909)Google Scholar
[6] Roytburd, Alexander, Kim, T. S., Su, Quanmin, Slutsker, J. S. and Wuttig, Manfred, Martensitic Transformation in Constrained Films, Acta Mat.46, 5095 (1998)Google Scholar
[7] Roytburd, Alexander, Kim, T. S., Su, Quanmin, Slutsker, J. S. and Wuttig, Manfred, Martensitic Transformation in Constrained Films, Acta Mat.46, 5095 (1998)Google Scholar
[8] Chang, L. and Grummon, D. S., Philosophycal Mag. A, (1997), 76, 191 Google Scholar
[9] Kim, T., D, Oh., Thesis University of Maryland, (1994)Google Scholar
[10] Quanmin, Su, Hua, S. Z. and Wuttig, Manfred, Martensitic Transformation in Ni50Ti50 Films, Proc. “Shape Memory Alloys”, Trans. Mat. Res. Soc. Jpn., 18B, 1057 (1994)Google Scholar
[11] Mathews, Scott, Jang, Li, Su, Quanmin and Wuttig, Manfred, Martensitic Transformation in Ti50Ni25Pd25 Thin Films, submitted to Phil. Mag. LettersGoogle Scholar
[12] referenceGoogle Scholar
[13] Slutzker, J., Roytburd, A. and Wuttig, Manfred, to Scripta MaterialiaGoogle Scholar
[14] Su, Quanmin, Zheng, Yun and Wuttig, Manfred, Graphoepitaxial Shape Memory Thin Films on Si, Appl. Phys. Letters, 73, 750 (1998)Google Scholar
[15] Clark, A. E. in: Ferromagnetic Materials Vol.1, Wohlfarth, E. P. (ed.), Amsterdam (1980), pp. 531ff.Google Scholar
[16] Quandt, E., Clark, A. E., “Giant magnetostrictive materials and applications”, Proc. Actuator 98, Bremen, Germany, pp. 353358, (1998).Google Scholar
[17] Quandt, E., “Giant magnetostrictive thin film materials and applications”, Journal of Alloys and Compounds 258, pp. 126132, (1997).Google Scholar
[18] Quandt, E., Gerlach, B., and Seemann, K., “Preparation and Applications of Magnetostrictive Thin Films”, J Appl. Phys. 76, pp. 7000–02, (1994).Google Scholar
[19] Huang, J., Prados, C., Evetts, J. E., and Hernando, A., Phys. Rev. B 51 (1995).Google Scholar
[20] Williams, P. I. and Grundy, P. J., “Magnetic and magnetostrictive properties of amorphous rare earth- transitition metal alloy films”, J. Phys. D: Appl. Phys. 27 pp. 897902, (1994).Google Scholar
[21] Duc, N. H., Mackay, K., Betz, J., Givord, D., J. Appl. Phys. 79, pp. 973–76, (1996).Google Scholar
[22] Quandt, E., Ludwig, A., Betz, J., Mackay, K., Givord, D., “Giant Magnetostrictive Spring Magnet Type Multilayers”, J. Appl. Phys. 81, pp. 5420–22, 1997.Google Scholar
[23] Quandt, E., Ludwig, A., Lord, D. G., Faunce, C. A., “Magnetic Properties and Microstructure of Giant Magnetostrictive TbFe/FeCo Multilayers”, J. Appl. Phys. 83, pp. 7267–69, (1998).Google Scholar
[24] Wuttig, Manfred, Su, Quanmin, Masson, Fabrice, Quandt, Eckhard and Ludwig, Alfred, Magneto- mechanical Instability in FeTb/Fe Multilayers, J. Appl. Phys. 83, 7264 (1998)Google Scholar
[25] , Chopra et al., unpublished workGoogle Scholar