Hostname: page-component-6d856f89d9-nr6nt Total loading time: 0 Render date: 2024-07-16T07:35:36.116Z Has data issue: false hasContentIssue false

Shallow Ohmic Contacts to p-InGaAs Based on Pd/Ge with Implanted Zn or Cd

Published online by Cambridge University Press:  21 February 2011

P. Ressel
Affiliation:
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Rudower Chaussee 5, D-12489 Berlin, Germany
H. Strusny
Affiliation:
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Rudower Chaussee 5, D-12489 Berlin, Germany
D. Fritzsche
Affiliation:
Telekom FTZ, Am Kavalleriesand 3, D-64295 Darmstadt, Germany
H. Kräutle
Affiliation:
Telekom FTZ, Am Kavalleriesand 3, D-64295 Darmstadt, Germany
K. Mause
Affiliation:
Telekom FTZ, Am Kavalleriesand 3, D-64295 Darmstadt, Germany
Get access

Abstract

The development of shallow ohmic contacts for the thin p-InGaAs layer (p≤1*1019 cm−5) of InP-based heterojunction bipolar transistors is a severe challenge to contact technology. While standard metallizations reveal several drawbacks, Pd/Ge-based systems emerged as promising candidates. In this work, Zn or Cd was implanted into the inner Pd contact layer for lowering contact resistivity. We present a study of the electrical and metallurgical properties of Pd/Ge contacts to p-InGaAs, and the influence of Zn and Cd implanted into the metallization. The resistivity of implanted and annealed (450-575 °C) contacts is reduced up to one order of magnitude compared to the unimplanted contact. Backside SIMS measurements show that annealing leads to a very limited interdiffusion at the interface. Cd and Zn diffuse into the InGaAs layer to a depth of approx. 30 and 40 nm, respectively. Due to these features, this implanted Pd/Ge contact scheme is a promising candidate for shallow contacts to p-InGaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mishra, U. K., Jensen, J. F., Rensch, D. B., Brown, A. S., Stanchina, W. E., Trew, R. J., Pierce, M. W., Kargodorian, T. V., IEEE Electron Dev. Lett. 10, 467 (1989).CrossRefGoogle Scholar
2 Pitz, G., Hartnagel, H. L., Mause, K., Fiedler, F., Briggmann, D., Solid-State Electron. 35, 937 (1992).CrossRefGoogle Scholar
3 Shantharama, L. G., Schumacher, H., Leblanc, H. P., Esagui, R., Bhat, R., Koza, M., Electron. Lett. 26, 1127 (1990).CrossRefGoogle Scholar
4 Ressel, P., Vogel, K., Fritzsche, D., Mause, K., Electron. Lett. 28, 2237 (1992).Google Scholar
5 Marshall, E. D., Zhang, B., Wang, L. C., Jiao, P. F., Chen, W. X., Sawada, T., Lau, S. S., Kavanagh, K. L., Kuech, T. F., J. Appl. Phys. 62, 942 (1987).Google Scholar
6 Chen, W. L., Cowles, J. C., Haddad, G. I., Munns, G. O., Eisenbeiser, K. W., East, J. R., J. Vac. Sci. & Techn. B 10, 2354 (1992).Google Scholar
7 Han, W. Y., Lu, Y., Lee, H. S., Cole, M. W., Casas, L. M., DeAnni, A., Jones, K. A., Yang, L. W., J. Appl. Phys. 74, 754 (1993).Google Scholar
8 Palmstrom, C. J., Schwarz, S. A., Yablonovitch, E., Harbison, J. P., Schwartz, C. L., Florez, L. T., Gmitter, T. J., Marshall, E. D., Lau, S. S., J. Appl. Phys. 67, 334 (1990).Google Scholar
9 Ziegler, J. F., Biersack, J. P., The Stopping and Range of Ions in Solids. (Pergamon Press, New York, 1985).Google Scholar
10 Ressel, P., Trapp, M., Kräutle, H., to be published.Google Scholar
11 Schwarz, S. A., Pudensi, M. A. A., Sands, T., Gmitter, T. J., Bhat, R., Koza, M., Wang, L. C., Lau, S. S., Appl. Phys. Lett. 60, 1123 (1992).Google Scholar