Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T10:43:57.254Z Has data issue: false hasContentIssue false

Semiconductor Superlattices Studied by Grazing X-ray Scattering and Diffraction

Published online by Cambridge University Press:  10 February 2011

Z. H. Ming
Affiliation:
Department of Physics, SUNY at Buffalo, Amherst, NY 14260
Y. L. Soo
Affiliation:
Department of Physics, SUNY at Buffalo, Amherst, NY 14260
S Huang
Affiliation:
Department of Physics, SUNY at Buffalo, Amherst, NY 14260
Y. H. Kao
Affiliation:
Department of Physics, SUNY at Buffalo, Amherst, NY 14260
K. Stair
Affiliation:
Amoco Technology Company, P.O. Box 3011, Naperville, IL 60566
G. Devane
Affiliation:
Amoco Technology Company, P.O. Box 3011, Naperville, IL 60566
C. Choifeng
Affiliation:
Amoco Technology Company, P.O. Box 3011, Naperville, IL 60566
T. Chang
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322
L. P. Fu
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322
G. D. Gilliland
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322
J. Klem
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185
M. Hafich
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185
Get access

Extract

Semiconductor superlattices have been studied by grazing incidence x-ray scattering and x-ray diffraction. For superlattices of 100-period InGaAs/GaAs, lateral structural ordering has been found to occur in the material. For one particular sample (M1400), periodic thickness modulations have been observed in the InGaAs layers. X-ray results also provide evidence for an improvement of interface quality by using interrupt-growth method for 55-period AlAs/GaAs superlattices grown by MBE.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See for example, Quantum Semiconductor Structures, by C.Weisbuch and B.Vinter(Academic, NY, 1991)Google Scholar
2. Lang, D. V., People, R., Bean, J. C. and Sergent, A. M., Appl. Phys. Lett. 47, 1333(1985).Google Scholar
3. Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth, 27, 118(1974).Google Scholar
4. Ming, Z. H., Soo, Y. L., Huang, S., Kao, Y. H., Stair, K., Devane, G., and Choi-Feng, C., Appl. Phys. Lett, 66, 165(1995).Google Scholar
5. Ming, Z. H., Huang, S., Soo, Y. L., Kao, Y. H., Carns, T., and Wang, K. L., Appl. Phys. Lett. 67, 629(1995).Google Scholar
6. Kohrbruck, R., Munix, S., Bimberg, D., Mars, D. E., and Miller, J. N., Appi. Phys. Lett. 57, 1025(1990).Google Scholar
7. Masselink, W. T., Sun, Y. L., Fischer, R., Drunnond, T. J., Chhang, Y. C., Klein, M. V., and Morkoc, H., J. Vac. Sci. Technol. B2, 117(1984).Google Scholar
8. Ming, Z. H., Krol, A., Soo, Y. L., Kao, Y. H., Park, J. S., and Wang, K. L., Phys. Rev. B47, 16373(1993).Google Scholar
9. Ponchet, A. and Rocher, A., Emery, J.-Y., Starck, C., and Goldstein, L., J. Appl. Phys. 74, 3778(1993).Google Scholar
10. Cheng, K. Y., Hsieh, K. C., and Baillargeon, J. N., Appl. Phys. Lett, 60, 2892(1992).Google Scholar
11. Grundmann, M., Lienert, U., Bimberg, D., Fischer-Colbrie, A. and Miller, J. N., Appl. Phys. Lett. 55, 1765(1989).Google Scholar
12. Guha, S., Madhukar, A., and Chen, Li, Appl. Phys. Lett. 56, 2304(1990); S. Guha, A. Madhukar, and K.C.Rajkumar, Appl. Phys. Lett. 57, 2110(1990); S.Guha, K.C.Rajkurnar, and A.Madhukar, J. Crystal Growth, 111, 434(1991).Google Scholar