Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T12:05:55.212Z Has data issue: false hasContentIssue false

Semiconductor Device research Using Non-Lattice Matched Structures

Published online by Cambridge University Press:  21 February 2011

Jerry M. Woodall*
Affiliation:
IBM Thomas J. Watson Research Center, P.O. Box 218 Yorktown, NY 10598
Get access

Abstract

Heterojunctions are ubiquitous to compound semiconductor devices. They are used for both device function and are remedial for problems associated with Fermi level pmining. In the past lattice matching was a critical feature for success. Most devices were made using either the GaAIAs/GaAs or InP/GalnAsP systems. Recently, there have been breakthroughs in the fabrication of devices using non-lattice-matched systems. These include high speed devices made of GaAs grown on Si, InGaAs/GaAs high speed and optoclectronic devices, infra-red photodetectors made of GaInAs grown on GaAs and GeSi/Si strained-layer superlattices. This talk will review this progress and discuss some of the materials and epitaxy issues likely to affect future trends in device research using non-latticematched layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Craford, M.G., Grove, W.O., and Fox, M.J., J. Electrochem. Soc. 118 355 (1971).Google Scholar
2. Matthews, J.W. and Blakeslee, A.E., J. Vac. Sci. Technol. 14, 989 (1977).Google Scholar
3. Osbourn, G.C., J. Appl. Phys. 53, 1586 (1982).Google Scholar
4. Ludowise, M.J., Dietze, W.T., Lewis, C.R., Camras, M.D., ltolonyak, N. Jr., Fuller, B.K., and Nixon, M.A., Appl. Phys. Lett. 42, 487 (1983).Google Scholar
5. Zipparian, T.E., Dawson, L.R., Osbourn, G.C., and Fritz, I.J., IEDM Tech. Digest, 696 (1983).Google Scholar
6. Rosenberg, J.J., Benlamri, M., Kirchner, P.D., Woodall, J.M., and Pettit, G.D., IEEE Electron Device Letters, EDL-6, 491 (1985).CrossRefGoogle Scholar
7. Henderson, T., Aksun, M.I., Peng, C.K., Morkoc, H., Chao, P.C., Smith, P.M., Duh, K.H.G., and Lester, L.F., IEEE Electron Device Letters, ElL, 647 (1986).Google Scholar
8. Ito, Hiroshi and Ishibashi, Tadao, Jap. I. Appl. Phys. 25, L421 (1986).Google Scholar
9. Fischer, S., Fekete, D., Feak, G.B. and Ballantyne, J.M., Appl. Phys. Lett. 50 (12) (1987).Google Scholar
10. Kasper, E., Herzog, H.J. and Kibbel, H., Appl. Phys. 8, 199 (1975).CrossRefGoogle Scholar
11. Temkin, H., Pearsall, T.P., Bean, J.C., Logan, R.A. and Luryi, S., AppI. Phys. Lett. 38 963 (1986).Google Scholar
12. Gale, R.P., Fan, J.C.C., Tsaur, B-Y., Turner, G.W. and Davis, F.M., IEEE Electron Devices Lett. EDL-2 169 (1981); I.K. Choi, B-Y. Tsaur, G.M. Metze, G.W. Turner and J.C.C. Fan, IEEE Electron Devices Lett. EDL-5, 207 (1984); T.I. Windhom, G.M. Metze, B-Y. Tsaur and J.CC. Fan, Appl. Phys. Lett. 45, 309 (1984).Google Scholar
13. C.R. Lewis Ford, C. W., Virshup, G.F., Green, R.T. and Werthen, J.G., SERI Contract Report #EG-77–C–01–4042.Google Scholar
14. Rogers, D.L., Woodall, J.M., Pettit, G.D. and Mclnturff, D., 1987 Device Research Conference, Abstract VI-A-8, Santa Barbara CA, June 22–24, 1987.Google Scholar
15. Shockley, W., U.S. Patent 2,569,347 (1951).Google Scholar
16. Kroemer, H., Proc. IEEE, 51, 1782 (1963).Google Scholar
17. It. Rupprecht, Woodall, J.M. and Pettit, G.D., Appl. Phys. Lett. 11, 81 (1967).Google Scholar
18. Blakeslee, A.E. (private communication).Google Scholar
19. Bohm, K. and Fischer, G., J. AppI. Phys. 50, 5453 (1979).Google Scholar
20. Tischler, M., Katsuyama, T., EI-Masry, N.A., Bedair, S.M., Appl. Phys. Lett. 46, 294 (1985).Google Scholar
21. Kroemer, H., 1986 Device Research Conference, Amherst MA.Google Scholar
22. Shichijo, H., Lee, J.W., Mclevige, W.V. and Taddiken, A.l. Gallium Arsenide and Related Compounds-1986 (Inst. Phys. Conf. Ser. No. 83, London 1987) 489.Google Scholar
23. Tran, L.T., Matyi, R.J., Shichijo, H., Yuan, H-T. and Lee, J.W., 1987 Device Research Confemce, Santa Barbara, CA.Google Scholar
24. Biefeld, R.M., Osbourn, G.C., Courley, P.L. and Fritz, I.J., J. Electron. Mat. 12, 903 (1983).CrossRefGoogle Scholar
25. Fritz, I.T., Dawson, L.R., Osbourn, G.D., Gourley, P.L. and Biefeld, R.M., Gallium Arsenide and Related Compounds-1982 (Inst. Phys. Conf. Ser. No. 65, London 1983) 241.Google Scholar
26. Yang, Y.J., llsich, K.Y., and Kolbas, R.M., 1987 Device Research Conference, Santa Barbara, CA.Google Scholar
27. JW. Matthews, Mader, S. and Light, T.B.,.J. Appl. Phys. 41, 3800 (1970).Google Scholar
28. McGroddy, K., Fossum, E. and Woodall, J.M., (private communication).Google Scholar
29. De Cooman, B.C., (private communication).Google Scholar
30. Woodall, J.M., Pettit, G.D., Jackson, T.N., Lanza, C., Kavanagh, K.L., and Mayer, J.W., Phys. Rev. Lett. 51, 1783 (1983).Google Scholar
31. Petroff, P.M., Logan, R.A. and Savage, A., Journal of Microscopy, 118, 225 (1979).Google Scholar
32. Batson, P.E., Kavanagh, K.L., Woodall, J.M. and Mayer, J.W., Phys. Rev. Lett. 57 2729 (1986).Google Scholar
33. Ludeke, R., J. Vac. Sci. Technol. B2 (3), 400 (1984).Google Scholar
34. Matthews, J.W. and Blakeslee, A.E., Journal of Crystal Growth, 32, 265 (1976).CrossRefGoogle Scholar