Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-18T05:24:27.247Z Has data issue: false hasContentIssue false

A Self-Organized Molecular Beam Epitaxial Growth of the InSb/AlGaSb Quantum Dots on High-Index GaAs Substrates

Published online by Cambridge University Press:  03 September 2012

Mitsuaki Yano
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535, Japan.
Kazuto Koike
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535, Japan.
Masataka Inoue
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535, Japan.
Toshiya Saitoh
Affiliation:
RCIQE Hokkaido University, Kita-ku N13W8, Sapporo 060, Japan.
Kanji Yoh
Affiliation:
RCIQE Hokkaido University, Kita-ku N13W8, Sapporo 060, Japan.
Get access

Abstract

In-situ organization of InSb quantum dots on Al0.5Ga0.5Sb is reported. Samples were grown on just (100), 5°off (100) towards [0-1-1],(311)A, and (311)B surfaces of GaAs by molecular beam epitaxy. The growth mechanism and characteristics of quantum dots were analyzed using reflection high-energy electron diffraction, atomic force microscopy, and photoluminescence. Observed photoluminescence peak shift towards lower energy side with InSb thickness was interpreted by the development of quantum dots. Substrate orientation effect was examined and found to be useful to increase the dot density. As a result, as high as ~3xl 09 cm-2 dot density was achieved on the (311 )B substrate whereas the typical value on the (100) was ~2xl 08 cm-2 .

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, P., Xie, Q., Madhukar, A., Li Chen, and Konkar, A., J. Vac.Sci.Technol. B12, 2568 (1994).Google Scholar
2 Leonard, D., Pond, K., and Petroff, P.M., Phys.Rev. B5, 11687 (1994).Google Scholar
3 Fafard, S., Leonard, D., Merz, J.L., and Petroff, P.M., Appl.Phys.Lett. 65, 1388 (1994).Google Scholar
4 Chen, K.M., Jesson, D.E., Pennycook, S.J., Thundat, T., and Warmack, R.J., J.Vac.Sci.Technol. B14, 2199 (1996).Google Scholar
5 Hatami, F., Ledentov, N.N., Grundmann, M., Heinrichsdorff, F., Beer, M., Bimberg, D., Ruvimov, S.S., Werner, P., Gösele, U., Heydenreich, J., Richter, U., Ivanov, S.V., Meltser, B.Ya., Kop’ev, P.S., and Alferov, Zh. I., Appl.Phys.Lett. 67, 656 (1995).Google Scholar
6 Bennett, B.R., Thibado, P.M., Twigg, M.E., Glaser, E.R., Magno, R., Shanabrook, B.V., and Whitman, L J., J.Vac.Sci.Technol. B14, 2195 (1996).Google Scholar
7 Glaser, E.R., Bennett, B.R., Shanabrook, B.V., and Magno, R., Appl.Phys.Lett. 68, 3614 (1996).Google Scholar
8 Van de Walle, C.G., Phys.Rev. B39, 1871 (1989).Google Scholar
9 Kane, O.E., J.Phys.Chem.Solids 1, 249 (1957).Google Scholar
10 Bennett, B.R., Shanabrook, B.V., and Magno, R., Appl.Phys.Lett. 68, 958 (1996).Google Scholar
11 Lubyshev, D.I., Gonzalez-Borrero, P.P., Marega, E.,Jr., Petitprez, E., and Basmaji, P., J.Vac.Sci. Technol. B14, 2212 (1996).Google Scholar
12 Ponchet, A., Corre, A.Le, L’Haridon, H., Lambert, B., and Salaün, S., Appl.Phys.Lett. 67, 1850 (1995).Google Scholar
13 Berti, M., Drigo, A.V., Giuliani, A., Mazzer, M., Camporese, A., Rossetto, G., and Torzo, G., J.Appl.Phys. 80, 1931 (1996).Google Scholar