Skip to main content Accessibility help

Self-Organization of Steps and Domain Boundaries of 7×7 Reconstruction on Si(111)

  • H Hibino (a1), Y. Homma (a1) and T. Ogino (a1)


We describe three different aspects of the self-organization of steps and domain boundaries of a 7×7 reconstruction on SI(111) surfaces. The first is the formation of a triangular-tiled pattern of “1×1’ and 7×7 domains during the phase transition. ‘1÷1’ and 7×7 domains have different surface stresses. The triangular-tiled pattern is stabilized through stress relaxation. The second is the step arrangement inside a hole, which was fabricated by a standard lithographic technique. The step arrangement in the hole depends on the temperature. Below the ‘1×1’-to-7×7 phase transition, the hole has a three-fold symmetry consisting of step-bunched and non-bunched regions. This is because the step arrangement on the vicinal Si(111) surfaces depends on the direction of the steps. The third aspect is the formation of a pattern of steps and domain boundaries induced by Si growth. During the step-flow growth on Si(111), steps preferentially protrude along the domain boundaries on the lower terrace. The resulting changes in step shape induce a unique rearrangement of the domain boundaries, the number of which decreases during growth. However, when a periodic pattern is formed in the initial stages, it remains stable during growth.



Hide All
[1] Eaglesham, D. J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).
[2] Notzel, R., Temmyo, J., and Tamamura, T., Nature 369, 132 (1994).
[3] Leonard, D., Krishnamurthy, M., Reaves, C. M., Debaars, S. P., and Petroff, P. M., Appl. Phys. Lett. 63, 3203 (1993).
[4] Xie, Q., Madhukar, A., Chen, R, and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542 (1995).
[5] Tersoff, J., Teichert, C., and Lagally, M. G., Phys. Rev. Lett. 76, 1675 (1996).
[6] Kitamura, M., Nishioka, M., Oshinowo, J., Arakawa, Y., Appl. Phys. Lett. 66, 3663 (1995).
[7] S. Yu. Shiryaev, Jensen, F., Hansen, J. Lundsgaard, Petersen, J. Wulff, and Larsen, A. Nylandsted, Phys. Rev. Lett. 78, 503 (1997).
[8] Kamins, T. I. and Williams, R. Stanley, Appl. Phys. Lett. 71, 1201 (1997).
[9] Jin, G., Liu, J. L., Thomas, S. G., Luo, Y. H., Wang, K. L., and Bich-Yen Nguyen Appl. Phys. Lett. 75, 2752 (1999).
[10] Deng, X. and Krishnamurthy, M., Phys. Rev. Lett. 81, 1473 (1998).
[11] Kohler, U., Jusko, O., Pietsh, G., MiIller, B., and Henzler, M., Surf. Sci. 248, 321 (1991).
[12] Hibino, H., Shimizu, N., and Shinoda, Y., J. Vac. Sci. Technol. A 11, 2458 (1993).
[13] Hibino, H., Shimizu, N., Shinoda, Y., and Ogino, T., Mat. Res. Soc. Symp. Proc. 317, 41 (1994).
[14] Homma, Y., Suzuki, M., and Tomita, M., Appl. Phys. Lett. 62, 3276 (1993).
[15] Hibino, H., Homma, Y., and Ogino, T., Surf. Sci. Lett. 364, L587 (1996).
[16] Yamaguchi, H. and Yagi, K., Surf. Sci. 287/288, 820 (1993).
[17] Hibino, H., Homma, Y., and Ogino, T., Phys. Rev. B 58, R7503 (1998).
[18] Hoshino, M., Shigeta, Y., Ogawa, K., and Homma, Y., Surf. Sci. 365, 29 (1996).
[19] Yagi, K., Yamanaka, A., Sato, H., Shima, M., Ohse, H., Ozawa, S., and Tanishiro, Y., Prog. Theor. Phys. Supp. 106, 303 (1991).
[20] Twesten, R. D. and Gibson, J. M., Phys. Rev. B 50, 17628 (1993).
[21] Hibino, H., Homma, Y., Bartelt, N. C., and Ogino, T., (to be published).
[22] Phaneuf, R. J. and Williams, E. D., Phys. Rev. Lett. 58, 2563 (1987).
[23] Phaneuf, R. J., Williams, E. D., and Bartelt, N. C., Phys. Rev. B 38, 1984 (1988).
[24] Williams, E. D. and Bartelt, N. C., Science 251, 393 (1991).
[25] Wei, J., Wang, X.-S., Goldberg, J. L., Bartelt, N. C., and Williams, E. D., Phys. Rev. Lett. 68, 3885 (1992).
[26] Williams, E. D., Phaneuf, R. J., Wei, J., Bartelt, N. C., and Einstein, T. L., Surf. Sci. 294, 219 (1993).
[27] Hibino, H. and Ogino, T., Phys. Rev. Lett. 72, 657 (1994).
[28] Hibino, H., Fukuda, T., Suzuki, M., Homma, Y., Sato, T., Iwatsuki, M., Miki, K., and Tokumoto, H., Phys. Rev. B 47, 13027 (1993).
[29] Ogino, T., Hibino, H., and Homma, Y., Jpn. J. Appl. Phys. 34, L668 (1995).
[30] Ogino, T., Hibino, H., and Homma, Y., Appl. Surf. Sci. 107, 1 (1995).
[31] Ogino, T., Hibino, H., and Homma, Y., Appl. Surf. Sci. 117/118, 642 (1997).
[32] Homma, Y., Hibino, H., Kunii, Y., and Ogino, T., Surf. Sci. (to be published).
[33] Jayaprakash, C., Rottman, C., and Saam, W. F., Phys. Rev. B 39, 6549 (1984).
[34] Hibino, H. and Ogino, T., Appl. Phys. Lett. 67, 915 (1995).
[35] Kawamura, T., Hibino, H., and Ogino, T., Jpn. J. Appl. Phys. 38, 1530 (1999).
[36] Tung, R. T. and Schrey, F., Phys. Rev. Lett. 63, 1277 (1989).
[37] Tung, R. T., Schrey, F., and Eaglesham, D. J., J. Vac. Sci. Technol. B 8, 237 (1990).
[38] Hasegawa, T., Kohno, M., Hosaka, S., and Hosoki, S., Phys. Rev. B 48, 1943 (1993).
[39] Tabe, M., Jpn. J. Appl. Phys. 34, L1375 (1995).
[40] Finnie, P. and Homma, Y., Appl. Phys. Lett. 72, 827 (1998).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed