Skip to main content Accessibility help
×
Home

A Selfconsistent-Charge Density-Functional Tight-Binding Scheme

  • M. Elstner (a1) (a2), D. Porezag (a1), G. Jungnickel (a1), Th. Frauenheim (a1), S. Suhai (a2) and G. Seifert (a3)...

Abstract

We present an extension to the tight-binding (TB) approach to improve total energies, forces and transferability in the presence of considerable long-range Coulomb interactions. We derive an approximate energy expression in terms of charge density fluctuations δn at a reference (input) density n 0, which is a second order approximation to the total energy expression in density functional theory (DFT). With the choice of n 0 as a superposition of densities of neutral atomic fragments, we can define a repulsive potential as in standard TB theory, which is pairwise, short ranged and transferable. The zero order terms in the total energy expression are recoverd as the standard terms of our density-functional based tight-binding (DF-TB). For the second order terms, the charge density fluctuations δn are approximated by the total charge fluctuation Δqα at atom α, which is qualitatively estimated by employing the Mullikan charge analysis. Within this approximations the total energy expression contains new parameters, which are related to ab-intio DFT calculations. Finally, by introducing localized basis functions and applying the variational principle we arrive at the Hamilton matrix elements, wich themselves depend on the charge fluctuations and, therefore, the general eigenvalue problem has to be solved self-consistently. To obtain forces for efficient geometry relaxation and molecular-dyamics, we calculated analytical derivatives of the total energy with respect to the atomic sites. In order to demonstrate the strenghts of our self-consistent-charge tight-binding (SCC-TB), we calculated reaction energies, geometries and vibrational frequencies for a large set of molecules and compare the results to semi-empirical methods, density-functional calculations and experiment.

Copyright

References

Hide All
1. Harris, J., Phys. Rev. 31 1770 (1985).
2. Foulkes, W., Haydock, R., Phys. Rev. B 39 12520 (1989).
3. Seifert, G., Eschrig, H., Bieger, W., Z. Phys. Chemie (Leipzig) 267 529 (1986).
4. Sutton, A. P., et al., J. Phys. C: Solid State Physics 21 35 (1988).
5. Sankey, O. F., Niklewski, D. J., Phys. Rev. B 40 3979 (1989).
6. Porezag, D., Frauenheim, Th., Köhler, Th., Seifert, G., Kaschner, R., Phys. Rev. B 51 12947 (1995).
7. Harrison, W. A., Phys. Rev. B 31 2121 (1985).
8. Kohn, W., Sham, L. J., Phys. Rev. 140A 1133 (1965).
9. Pariser, R., J. Chem. Phys. 24 125 (1956)
10. Dewar, M. J. S., Hojvat, N. L. (Sabelli), J. Chem. Phys., 34 1232 (1961),
Dewar, M. J. S., Sabelli, N. L., J. Phys. Chem., 66 2310 (1962),
11. Klopman, G., J. Am. Chem. Soc. 28 4550 (1964).
12. Mataga, N., Nishimoto, K., Z. phys. Chemie (Frankfurt), 13 140 (1957).
13. Elstner, M., et al., submittet to PRL.
14. Elstner, M., et al., to be published in Phys. Rev. B.
15. Andzelm, J., Wimmer, E., J. Chem. Phys. 96 1280 (1992).
16. Dewar, J. S. et al., J. Am. Chem. Soc. 107 3902 (1985)
17. Santarsiero, B. et al., J. Am. Chem. Soc. 112 9416 (1990).
18. Tajkhorsid, E., Paiz, B., Suhai, S., J. Phys. Chem. 1997 in press.
19. Tavan, B., Schulten, K., Osterhalt, D., Biophys. J. 47 415 (1985).
20. Tajkhorsid, E., Elstner, M., Frauenheim, T., Suhai, S., to be published.
21. Kolb, M., Thiel, W., J. Chem. Chem., 14 (1993) 775

A Selfconsistent-Charge Density-Functional Tight-Binding Scheme

  • M. Elstner (a1) (a2), D. Porezag (a1), G. Jungnickel (a1), Th. Frauenheim (a1), S. Suhai (a2) and G. Seifert (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed