Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:07:52.619Z Has data issue: false hasContentIssue false

Self-branching in GaN Nanowires Induced by a Novel Vapor-Liquid-Solid Mechanism

Published online by Cambridge University Press:  01 February 2011

Chang-Yong Nam
Affiliation:
cynam@bnl.gov, Brookhaven National Laboratory, Center for Functional Nanomaterials, Bldg. 555, Upton, NY, 11973-5000, United States, 631-344-7066
Douglas Tham
Affiliation:
tham@caltech.edu, California Institute of Technology, Department of Materials Science, Pasadena, CA, 91125, United States
John E. Fischer
Affiliation:
fischer@seas.upenn.edu, University of Pennsylvania, Department of Materials Science and Engineering, Philadelphia, PA, 19104, United States
Get access

Abstract

Nanowires have great potential as building blocks for nanoscale electrical and optoelectronic devices. The difficulty in achieving functional and hierarchical nanowire structures poses an obstacle to realization of practical applications. While post-growth techniques such as fluidic alignment might be one solution, self-assembled structures during growth such as branches are promising for functional nanowire junction formation. In this study, we report vapor-liquid-solid (VLS) self-branching of GaN nanowires during AuPd-catalyzed chemical vapor deposition (CVD). This is distinct from branches grown by sequential catalyst seeding or vapor-solid (VS) mode. We present evidence for a VLS growth mechanism of GaN nanowires different from the well-established VLS growth of elemental wires. Here, Ga solubility in AuPd catalyst is limitless as suggested by a hypothetical pseudo-binary phase diagram, and the direct reaction between NH3 vapor and Ga in the liquid catalyst induce the nucleation and growth. The self-branching can be explained in the context of the proposed VLS scheme and migration of Ga-enriched AuPd liquid on Ga-stabilized polar surface of mother nanowires. This work is supported by DOE Grant No. DE-FG02-98ER45701.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, Y., Duan, X. F., Cui, Y., Lieber, C. M., Nano Lett. 2, 101 (2002).Google Scholar
2. Li, Y., Qian, F., Xiang, J., Lieber, C. M., Materials Today 9, 18 (2006).Google Scholar
3. Qian, F., Li, Y., Gradecak, S., Wang, D. L., Barrelet, C. J., Lieber, C. M., Nano Lett. 4, 1975 (2004).Google Scholar
4. Johnson, J. C., Yan, H. Q., Schaller, R. D., Haber, L. H., Saykally, R. J., Yang, P. D., J. Phys.Chem. B 105, 11387 (2001).Google Scholar
5. Han, W. Q., Fan, S. S., Li, Q. Q., Hu, Y. D., Science 277, 1287 (1997).Google Scholar
6. Duan, X. F., Lieber, C. M., J. Am. Chem. Soc. 122, 188 (2000).Google Scholar
7. Chen, C. C., Yeh, C. C., Adv. Mater. 12, 738 (2000).Google Scholar
8. Kim, H. M., Kim, D. S., Park, Y. S., Kim, D. Y., Kang, T. W., Chung, K. S., Adv. Mater. 14,991 (2002).Google Scholar
9. Bertness, K. A., Roshko, A., Sanford, N. A., Barker, J. M., Davydov, A., J. Cryst. Growth 287, 522 (2006).Google Scholar
10. Kuykendall, T., Pauzauskie, P., Lee, S. K., Zhang, Y. F., Goldberger, J., Yang, P. D., Nano Lett. 3, 1063 (2003).Google Scholar
11. Wagner, R. S., Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
12. Nam, C. Y., Tham, D., Fischer, J. E., Appl. Phys. Lett. 85, 5676 (2004).Google Scholar
13. Nam, C. Y., Kim, J. Y., Fischer, J. E., Appl. Phys. Lett. 86, 193112 (2005).Google Scholar
14. Nam, C. Y., Tham, D., Fischer, J. E., Mater. Res. Soc. Symp. Proc. 831, E12.8.1 (2005).Google Scholar
15. Tham, D., Nam, C. Y., Fischer, J. E., Adv. Func. Mater. 16, 1197 (2006).Google Scholar
16. Tham, D., Thesis, M.S., University of Pennsylvania, 2005, http://www.seas.upenn.edu/~jefnano/pdf/DTham_Master_Thesis.pdfGoogle Scholar
17. Nam, C. Y., Jaroenapibal, P., Tham, D., Luzzi, D. E., Evoy, S., Fischer, J. E., Nano Lett. 6,153 (2006).Google Scholar
18. Butt, D. P., Park, Y., Taylor, T. N., J. Nucl. Mater. 264, 71 (1999).Google Scholar
19. Predel, Bruno, Madelung, O., Landolt-Bornstein, Group IV Physical Chemistry - Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Volume 5 -Electronic Materials and Semiconductors. (Springer-Verlag, Berlin; New York, 1998).Google Scholar
20. Wang, D., Flanagan, T. B., Scripta Mater. 49, 77 (2003).Google Scholar
21. Barin, Ihsan, Platzki, Gregor, Thermochemical data of pure substances, 3rd ed. (VCH, Weinheim; New York, 1995).Google Scholar
22. Dick, K. A., Deppert, K., Karlsson, L. S., Wallenberg, L. R., Samuelson, L., Seifert, W.,Adv. Func. Mater. 15, 1603 (2005).Google Scholar
23. May, S. J., Zheng, J. G., Wessels, B. W., Lauhon, L. J., Adv. Mater. 17, 598 (2005).Google Scholar
24. Yan, H. Q., He, R. R., Johnson, J., Law, M., Saykally, R. J., Yang, P. D., J. Am. Chem. Soc. 125, 4728 (2003).Google Scholar
25. Vaddiraju, S., Mohite, A., Chin, A., Meyyappan, M., Sumanasekera, G., Alphenaar, B. W.,Sunkara, M. K., Nano Lett. 5, 1625 (2005).Google Scholar
26. Chen, Y., Campbell, L., Zhou, W. L., J. Cryst. Growth 270, 505 (2004).Google Scholar
27. Hannon, J. B., Kodambaka, S., Ross, F. M., Tromp, R. M., Nature 440, 69 (2006).Google Scholar