Skip to main content Accessibility help

Self-biased Dual-phase Energy Harvesting System

  • Yuan Zhou (a1), Amar Bhalla (a2) and Shashank Priya (a1)


In this study, we report the design and fabrication of a dual-phase energy harvester which can synchronously harvest both mechanical and magnetic energy in the absence of DC magnetic field. The harvester consists of a magnetostrictive cantilever beam and a magnetostrictive/ piezoelectric (M/P) self-biased laminate composite structure. This structure allows us to utilize piezoelectric and self-biased magnetoelectric effect simultaneously. By combining these mechanisms together, a sum effect for harvesting both magnetic and vibration energy was realized under DC magnetic field free condition. The bilayer structure provides a simplified geometry that can be easily incorporated into MEMS devices. We demonstrate a hybrid synthesis method for fabrication of complex three-dimensional thin films using a cost-effective and mask-less aerosol jet deposition process. The combination of the hybrid aerosol jet process with dual phase harvester design provides the opportunity to fabricate small scale power sources required for structural health monitoring applications.


Corresponding author

*Corresponding Author: Yuan Zhou,


Hide All
1. Park, G., Rosing, T., Todd, M. D., Farrar, C. R., and Hodgkiss, W., J. Infrastruct. Syst. 14, 64 (2008)
2. Mitcheson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S., and Green, T. C., Proceedings of the Ieee 96, 1457 (2008)
3. Maten, L., and Moll, F., Proceedings of the SPIE 5837, 359 (2005)
4. Spaldin, N. A., and Fiebig, M., Science 309, 391 (2005).
5. Priya, S., Islam, R., Dong, S. X., and Vieland, D., J. Electroceram. 19, 147 (2007)
6. Nan, C.-W., Bichurin, M. I., Dong, S., Viehland, D., and Srinivasan, G., J. Appl. Phys. 103, 301101 (2008).
7. Srinivasan, G., Annu. Rev. Mater. Res. 40, 153 (2010)
8. Dong, S. X., Zhai, J. Y., Li, J. F., and Viehland, D., Appl. Phys. Lett. 89, 252904 (2006)
9. Yang, S. C., Park, C. S., Cho, K. H., and Priya, S., J. Appl. Phys. 108, 093706 (2010).
10. Yang, S. C., Cho, K. H., Park, C. S., and Priya, S., Appl. Phys. Lett. 99, 202904 (2011).
11. Yang, S. C., Ahn, C. W., Cho, K. H., and Priya, S., J. Am. Ceram. Soc. 94, 3889 (2011).
12. Mandal, S. K., Sreenivasulu, G., Petrov, V. M., and Srinivasan, G., Phys. Rev. B. 84, 014432 (2011).
13. Mandal, S. K., Sreenivasulu, G., Petrov, V. M., and Srinivasan, G., Appl. Phys. Lett. 96, 192502 (2010).
14. Laletin, U., Sreenivasulu, G., Petrov, V. M., Garg, T., Kulkarni, A. R., Venkataramani, N., and Srinivasan, G., Phys. Rev. B. 85, 104404 (2012).
15. Zhou, Y., Yang, S. C., Apo, D. J., Maurya, D., and Priya, S., Appl. Phys. Lett. 101, 232905 (2012)
16. Folgar, C. E., Suchicital, C., and Priya, S., Materials letters 65, 1302 (2011)
17. Park, C. S., Lee, J. W., Park, G. T., Kim, H. E., and Choi, J. J., J. Mater. Res. 22, 1367 (2007)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed