Skip to main content Accessibility help
×
Home

Self-Assembled Monolayer Films for Nanofabrication

  • Elizabeth A. Dobisz (a1), F. Keith Perkins (a1), Susan L. Brandow (a2), Jeffrey M. Calvert (a2) and Christie R.K. Marrian (a3)...

Abstract

Central to nanofabrication is the ability to transfer a pattern from an imaging layer to a device or structure. At the smallest dimensions (<20 nm), thin resists or imaging layers have been used exclusively. The transfer of a pattern that is formed in a thin layer resist presents severe technological challenges to resist materials development. A novel approach based on self-assembling monomolecular layer resists is demonstrated with two organosilane films, formed from (aminoethylaminomethyl)phenethyltrimethoxysilane (PEDA) and 4-chloromethylphenyltrichlorosilane (CMPTS). The molecules have separate chemical functionalities for binding to a Si substrate and for promoting chemistry leading to catalysis and the growth of an electroless plated metal film. STM lithographic exposure destroys the ability of the molecule to bind to a catalyst, which initiates an electroless metallization. This forms the basis for a selective imaging and the pattern transfer process. A 25 nm thick Ni layer acts as a very robust etch mask, even as the unmasked regions of Si are etched as deep as 5 μm by reactive ion etching with SF6. With our process 15 nm lines with 3.3 nm edge roughness have been fabricated in the plated Ni and etched into the underlying Si. The development of the resist process and the STM lithography will be described and the resolution of the approach will be discussed.

Copyright

References

Hide All
1 National Research Council 2 postdoctoral associate.
2 See for example, Iaasacson, M. & Murray, A., J. Vac. Sci. Technol., 19, 1117 (1981). W. Chen & H. Ahmed, Appl. Phys. Lett., 62, 1499 (1993).
3 Perkins, F.K., Dobisz, E.A., Brandow, S.L., Calvert, J.M., and Marrian, C.R.K., submitted to Appl. Phys. Lett..
4 Moore, G.E., Proc. IEDM, IEEE cat. no. 75CH1023-1 ED (1975).
5 The National Technology RoadmaD for Semiconductors (Semiconductor Industry Association, San Jose 1994).
6 Lyo, I.-W. & Avouris, Ph., Science, 253, 173 (1991). D.M. Eigler & E.I. Schweizer, Nature, 344, 524 (1991). J. Lyding, T.C. Chen, J.S. Hubacet, J.R. Tucker, & G.C. Abein, Appl. Phys. Lett., 64, 2010 (1994).
7 Dobisz, E.A., Marrian, C.R.K., Salvino, R.E., Ancona, M.A., Perkins, F.K., Turner, N.H., J. Vac. Sci. Technol. B11, 2733 (1993).
8 Howard, R.E. Craighead, H.G., Jackel, L.D., Mankiewich, P.M., J. Vac. Sci. Technol., B1, 1101 (1983).
9 Dobisz, E.A. and Martian, C.R.K., Appl. Phys. Lett., 58, 2526 (1991).
10 McCord, M.A. & Pease, R.F.W., J. Vac. Sci. Technol. B6, 293 (1987).
11 Most of the concurrence with these effects are through private communications. One published report is McCord, M.A., Wagner, A., and Donohue, T., J. Vac. Sci. Technol., B11, 2958 (1993), Fig. 8. At 100 nm to 1 μm dimensions these effects were discussed at the 1995 SPIE Microlithography Symposium, San Jose, Feb. 19–24, and the 1993 Review of the Defense Advanced Lithography Program, New Orleans, LA, Jan. 25–28, 1993.
12 The resist is Shipley SAL-601-ER7.
13 See for example Dobisz, E.A. & Marrian, C.R.K., J, Vac. Sci. Technol. B9, 3024 (1991). C.R.K. Martian, E.A. Dobisz, J.A. Dagata, J. Vac. Sci. Technol. B10, 2877 (1992).
14 See for example Dobisz, E.A., Craighead, H.G., Beebe, E.D., & Levkoff, J., J. Vac. Sci. Technol. B4, 850 (1986).
15 See for example reference 8.
16 Sweeney, S., J. Vac. Sci. Technol. B3, 918 (1995). A. Scherer; H.G. Craighead, and E.D. Beebe, J. Vac. Sci. Technol., B5, 1048 (1987).
17 Calvert, J.M., J. Vac. Sci. Technol., B11, 2155 (1993).
18 Dressick, J., Dulcey, C.S., Georger, J.H., and Calvert, J.M., Chem. Mater., 6, 148 (1993).
19 Calvert, J.M., Koloski, T.S., Dressick, W.J., Dulcey, C.S., Peckerar, M.C., Cerrina, F., Taylor, J.W., Suh, D., Wood, O.R. II, MacDowell, A.A., and D'Sousza, R., Optical Engineering, 32, 2437 (1993).
20 Lercel, M.J., Tiberio, R.C., Chapman, P.F., Craighead, H.G., Sheen, C.W., Parikh, A.N., and Allara, D.L., J. Vac. Sci Technol., B11, 2823 (1993).
21 Marrian, C.R.K., Perkins, F.K., Brandow, S.L., Koloski, T.S., Dobisz, E.A., & Calvert, J.M., in “Nanolithography: A Borderland between STM, IB, and X-Ray Lithographies”, Kluwer Academic Publishers, Netherlands, 1994, pp 175188.
22 Ibe, J.B., Bey, P.P. Jr., Brandow, S.L., Brizzolara, R.A., Burnham, N.A., Dilella, D.P., Lee, K.P., Marnian, C.R.K., and Colton, R.J., J. Vac. Sci. Technol., 1990, A8, 3570.
23 Koloski, T.S., Dulcey, C.S., Dressick, W.J., and Calvert, J.M., Langmuir, 10, 3122 (1994).
24 Dressick, W.J., Dulcey, C.S., Georger, J.H. Jr., Calabrese, G.S., and Calvert, J.M., J. Electrochem. Soc., 141, 210 (1994).
25 Brandow, S.L., Dressick, W.J., Chow, G.M., Marrian, C.R.K., and Calvert, J.M., J. Electrochem. Soc. accepted for publication.
26 Marrian, C.R.K., Perkins, F.K., Brandow, S.L., Koloski, T.S., Dobisz, E.A., & Calvert, J.M., Appl. Phys. Lett., 64, 390 (1994).
27 Perkins, F.K., Dobisz, E.A., Brandow, S.L., Koloski, T.S., Calvert, J.M., Rhee, K.W., Kosakowski, J.E., Marrian, C.R.K., J. Vac. Sci. Technology, B12, 3725 (1994).
28 Perkins, F.K., Dobisz, E.A., Koops, H.W., Brandow, S.L., to be published.
29 Special thanks to Hans Koops, Deutches Bundepost, Darmstadt, Germany.
30 Dobisz, E.A. & Marrian, C.R.K., J. Vac. Sci. Technol. B9, 3024 (1991). C.R.K. Marrian, E.A. Dobisz, J.A. Dagata, J. Vac. Sci. Technol. B10, 2877 (1992).
31 Perkins, F.K., Dobisz, E.A., Brandow, S.L., Calvert, J.M., and Marrian, C.R.K., J. Vac. Sci. Technol., B13, to published (1995).
32 Calvert, J.M., Calabrese, G.S., Bohland, J.F., Dressick, W.J., Dulcey, C.S., Georger, J.H., Kosakowski, J., Pavelcheck, E.K., Rhee, K.W., Shirey., L.M., J. Vac. Sci. Technol., B12, 3884 (1994).

Self-Assembled Monolayer Films for Nanofabrication

  • Elizabeth A. Dobisz (a1), F. Keith Perkins (a1), Susan L. Brandow (a2), Jeffrey M. Calvert (a2) and Christie R.K. Marrian (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed