Skip to main content Accessibility help

Self-Assembled Conductive Network of Carbon Nanotubes in Polyaniline Forming Potential Nanocomposites

  • Sanju Gupta (a1), V Kandagor (a2), R. Hauge (a3), Y Ding (a4) and R. J. Patel (a5)...


Carbon nanotubes (CNTs) are of great interest because of several unsurpassable physical (mechanical, electrical, thermal, and chemical) properties. Especially their large elastic modulus and breaking strength make them highly attractive for their use as reinforced agents in forming a new class of multifunctional advanced materials - onanocomposites, in addition to high conductivity (either in semiconducting or metallic regimes) achieved through lower percolation thresholds for several electronic applications. Among the known conducting polymers, polyaniline (PANI) has a high potential due to its ease of synthesis, excellent environmental, and thermal stability and reversible control of its electrical/electronic properties. In this work, PANI-single-/multiwalled NTs composites films containing different nanotube content of both kinds were synthesized by spin-cast preceded by ultrasonic mixing of the constituents. They were characterized using complementary techniques including scanning electron microscopy, X-ray diffraction, infrared and Raman spectroscopy, and conductivity revealing their microscopic structure and physical properties thus helping in establishing process-structure-property correlations. The present work will discuss some of these findings in terms of a) self-alignment of nanotubes in conducting polymer b) their optical and electrical properties, and c) their design with a view to electronic and sensor applications, all ascribed due to long range π-π interaction between the constituents.



Hide All
1. Iijima, S., Nature 354, 56 (1991).
2. de Heer, W. A. and Ugarte, D., Chem. Phys. Lett. 207, 480 (1993).
3. Poncharal, P., W ang, Z.L., Ugarte, D., and de Heer, W.A., Science 283, 1513 (1999).
4. Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes, Academic Press, New York (1996).
5. Hamon, M.A., Chen, J., Hu, H., Chen, Y., Itkis, M.E., Rao, A.M., Eklund, P.C., and Haddon, R.C., Adv. Mater. 11, 834 (1999).
6. P.M.Ajayan, Stephan, O., Collie, C. and Trauth, D., Science 265, 1212 (1994).
7. Dai, L. and W., A. Mau, H., Adv. Mater. 13, 899 (2001).
8. Baughman, R. H., Zakhido v, A.A., and Heer, W.A., Science 197, 787 (2002).
9. Chen, G. Z., Shaffer, M.S.P., Coleby, D., Dioxan, G., Zhou, W., Fray, D.J., and Windle, A. H., Adv. Mater. 12, 522 (2000).
10. Hughes, M., Chen, G. Z., Shaf fer, M. S., Fray, D. J., and Windle, A.H., Chem. Mater. 14, 1610 (2002).
11. Do wns, C., Nuget, J., Ajayan, P.M., Duquette, D.J., and Santhanam, K.S.V, Adv. Mater. 12, 1028 (1999).
12. Gao, M., Huang, S., Dai, L., W allace, G., Gao, R., and Wang, Z., Angew. Chem. 112, 3810 (2000).
13. V alter, B., Ram, M.K., and Nicolini, C., Langmuir 18, 1535 (2002).
14. Fan, J., Wan, M., Zhu, D., Chang, B., Pan, Z., and Xie, S., J. Appl. Polym. Sci. 74, 2605 (1999).
15. Kymakis, E. and Amaratunga, G. A. J., Appl. Phys. Lett. 80, 112 (2002).
16. Woo, H. S., Czerw, R., W ebster, S., Carroll, D. L., Park, J.W., and Lee, J. H., Synth. Met . 116, 369 (2001).
17. Curran, S. A., Ajayan, P. M., Blau, W.J., Carroll, D.L., Coleman, J.N., Dalton, A.B., Da vey, A.P, Drury, , Mc Carthy, B., Maier, S., and Strevens, A., Adv. Mater. 10, 1091 (1998).
18. Panhuis, M., Maiti, A., Dalton, A.B., van den Noort, A., Coleman, J.N., Mc Carthy, B., and Blau, W.J., J. Phys. Chem. B 107, 478 (2003).
19. Blanchet, G. B., Loo, Y. L., Rogers, J. A., Fincher, C. R., and Gao, F., Appl. Phys. Lett. 82, 463 (2003).
20. Heeger, A. J. and MacDiamird, A. G., Mol. Cryst. Liq. Cryst. 77, 1 (1981).
21. Chiang, J. C. and MacDiarmid, A. G., Synth. Met. 13, 193 (1986).
22. Yao, Y., Smith, P., and Heeger, A., Synth. Met. 48, 91 (1992).
23. Zengin, Shou, W., Jin, J., Czerw, R., Smith, D. W. Jr., Echegoyen, L., Carroll, D. L., Goulger, S. H., and Ballato, J., Adv. Mater. 14, 1480 (2002).
24. Kinlen, P. J., US Patent No. 5,863,465 (1999).
25. Gill, P. R., Murray, W., and Wright, M. H., The Levenberg-Marquardt Method, Sec. 4.7.3 in Practical Optimization, Academic Press, London, 1981), pp.136137.
26. Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., Smalley, R., Dresselhaus, G., and Dresselhaus, M. S., Science 275, 187 (1997).
27. Blase, X., Benedict, L. X., Shirley, E. L., and Louie, S. G., Phys. Rev. Lett. 72, 1878 (1994).
28. Berber, S., Kwon, Y.-K., and Tomanek, D., Phys. Rev. B 62, R2291 (2000); J.-C. Charlier and G.-M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001).
29. Furukawa, Y., Ueda, F., Hyodo, Y., Harada, I., Nakajima, T., Kawagoe, T., Macromolecules, 24, 779 (1994).
30. Blanchet, G. B., Fincher, C. R., and Gao, F., Appl. Phys. Lett. 82, 1290 (2003).


Self-Assembled Conductive Network of Carbon Nanotubes in Polyaniline Forming Potential Nanocomposites

  • Sanju Gupta (a1), V Kandagor (a2), R. Hauge (a3), Y Ding (a4) and R. J. Patel (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.