Skip to main content Accessibility help

Selective Formation of Graphene on a Si Wafer

  • Naili Yue (a1), Yong Zhang (a1) and Raphael Tsu (a1)


We report a technique that can, in principle, selectively convert SiC into graphene at any location and in any size or shape, limited only by the ability of the available lithographic techniques. This technique relies on our discovery that, at ambient condition, a laser beam can convert SiC into graphene layers at the illuminated site, and the conversion can be realized in two ways. One can pattern the SiC film, which is already grown on a Si wafer, with desirable features and then illuminate the SiC film with the laser, or simply “write” the graphene features directly onto the unpatterned SiC film with the laser. Alternatively, one can pre-pattern the Si substrate to achieve selective growth of SiC, then perform the laser conversion. We have demonstrated the feasibility of both approaches. Fullerene (C60) was used to grow a thin SiC film on a Si (111) substrate using molecular beam epitaxy (MBE) at 700-800 oC. The results are verified by various structural, chemical and optical characterization techniques. This work yields the possibility of fabricating graphene based (electronic) nanostructures or superlattices, photonic crystals, and integrated electronic and optoelectronic devices on a large Si wafer.



Hide All
1. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., and Hong, B. H., Nature 457, 706 (2009).
2. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun’Ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C., and Coleman, J. N., Nature Nanotechnol. 3, 563 (2008).
3. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., and Ruoff, R. S., Carbon 45, 1558 (2007).
4. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., and Kong, J., Nano Lett 9, 30 (2009).
5. Li, X., Cai, W., An, J., Kim, S., Nah, J, Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., and Ruoff, R. S., Science 324, 1312 (2009).
6. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P.N., and De Heer, W. A., Sicence 312, 1191 (2006).
7. Hamza, A. V., Balooch, M. and Moalem, M., Surface Science 317, L1129 (1994).
8. Li, J. C., Batoni, P., and Tsu, R., Thin Solid Films 518, 1658 (2010).
9. de Heer, W. A., Solid State Commun. 143, 92 (2007).
10. Malard, L.M., Pimenta, M.A., Dresselhaus, G., and Dresselhaus, M.S., Physics Report 473, 51 (2009).
11. Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C., and Wirtz, L., Solid State Commun. 143, 44 (2007).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed