Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-25T08:46:55.632Z Has data issue: false hasContentIssue false

Selective Epitaxy as a Chemistry Free Route for Ybco Thin Film Patterning

Published online by Cambridge University Press:  01 January 1992

Hanns-Ulrich Habermeier
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr 1, W 7000 Stuttgart -80, Germany
Bentsian Elkin
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr 1, W 7000 Stuttgart -80, Germany
Gunter Beddies
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr 1, W 7000 Stuttgart -80, Germany
Bernd Leibold
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr 1, W 7000 Stuttgart -80, Germany
Get access

Abstract

Two different routes for micropatterning of YBCO thin films by selective epitaxy are presented; both methods are based on the intermixing of YBCO with silicon at the growth temperature for ( 001 ) as well as ( hk0 ) YBCO thin film epitaxy. One method ( I ) uses a pre-patterned yttria stabilized zirconia [ YSZ ] thin film epitaxially grown on a silicon single crystal giving rise to the epitaxy of c-axis oriented YBCO on YSZ whereas intermixing yields a nonsuperconducting Si-Y-Ba--Cu-O phase elsewhere. The other method (II ) uses SrTiO3 substrates suitable for ( 103 ) as well as ( 110 ) YBCO epitaxy coated with a pre-patterned amorphous silicon layer prior to YBCO deposition. Both techniques are chemistry free routes for YBCO thin film patterningand pave the way for superconductor/semiconductor hybride device fabrication ( route I ) as well as basic investigations of the anisotropic electronic and optical properties of YBCO ( route II ).

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bando, Y., Terashime, T., Shimura, K., and Saito, T., Physica C 180, 3 (1991)Google Scholar
2. Qin, S.L., Ruckman, M.W., Brookes, N.B., Phys. Rev. B 37, 3747 (1988)Google Scholar
3. Ma, Q.Y., Yang, E.S., Treyz, G.V. and Chang, C.-A., Appl. Phys. Lett. 55, 896 (1989)Google Scholar
4. Hatano, T., Fujimaki, A., Takai, Y. and Hayakawa, H., Jap. J. Appl. Phys. 29, 1077 (1990)Google Scholar
5. Habermeier, H.-U., Eur. J. Solid State Inorg. Chem. 28, 619 (1991)Google Scholar
6. Habermeier, H.-U., Lourenco, A.A.C.S., Friedl, B., Kircher, J., and Köhler, J., Solid State Comm. 77, 683 (1991)Google Scholar
7. Habermeier, H.-U., Lourenco, A.A.C.S., Leibold, B., Kircher, J., Friedl, B., and Lu, G., in High T-Superconductor Thin Films, L. Correra Editor Elsevier Science Publishers 1992), p. 343 Google Scholar
8. Fork, D.K., Fenner, D.B., Connell, G.A.N., Philips, J.M. and Geballe, T.H., Appl. Phys. Lett. 57, 1137 (1990).Google Scholar
9. Lu, G., Philipp, R., Habermeier, H.-U. and Leibold, B., to be published.Google Scholar
10. Thomsen, C., Wegerer, R., Habermeier, H.-U., and Cardona, M., Solid State Comm. 83, 199 (1992)Google Scholar
11. Habermeier, H.-U., Mertens, G. and Wagner, G., Vacuum 4, 859 (1990)Google Scholar
12. Habermeier, H.-U., Ebert, W., Kalt, S., Wagner, G., and Mertens, G., Thin Solid Films 174, 2659 (1989)Google Scholar
13. Pohl, J.E., Kirk, A., King, P.J., Lees, J.S., and Roys, W.B., Supercond. Sci. Technol. 4, 499 (1991)Google Scholar
14. Hontsu, S., Ishii, J., Kawai, T., and Kawai, S., Appl. Phys. Lett. 59, 2886 (1991)Google Scholar
15. Ito, T., Nature (London) 350, 596 (1991)Google Scholar
16. Wu, J.Z.,Hsueh, P.Y., McGuire, A.V., Schmidt, D.L., Wood, L.T., Shen, Y., and Chu, W.K., Phys. Rev. B 44 12643 (1991)Google Scholar