Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-19T04:54:48.026Z Has data issue: false hasContentIssue false

Selective Copper Cvd on Diamond Surfaces Using Self-Assembled Monolayers

Published online by Cambridge University Press:  25 February 2011

Stephen J. Potochnik
Affiliation:
Gas/Surface Dynamics Section, Code 6174 Center for Bio/Molecular Science and Engineering, Code 6900
David S. Y. Hsu
Affiliation:
Surface Chemistry Branch, Code 6170, Naval Research Laboratory, Washington, DC 20375-5320
Jeffrey M. Calvert
Affiliation:
Center for Bio/Molecular Science and Engineering, Code 6900
Pehr E. Pehrsson
Affiliation:
Gas/Surface Dynamics Section, Code 6174
Get access

Abstract

Selective chemical vapor deposition (CVD) of conductive, adherent copper films was achieved on single-crystal and polycrystalline diamond substrates modified with a ligating aminosilane and a Pd-based catalyst. Only isolated copper particles deposited on hydrogenated or aminosilane-coated diamond substrates without Pd. The Pd catalyst enhanced selectivity by a factor of 103 to 104. Copper CVD was performed in a cold-walled chamber at 446-456 K and 8x10-3 Pa using hexafluoroacetylacetonate-Cu-trimethylvinylsilane in H2 (1:1). Surfaces were characterized with x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Patterned Cu features were formed by exposing the aminosilane films to patterned ultraviolet (193 nm) radiation prior to Pd-catalyst addition and Cu CVD.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 L., Hitchman M., and Jensen, K. F., Eds., Chemical Vapor Deposition, (Academic Press, San Diego, 1993).Google Scholar
2 Gladfelter, W. L., Chem. Mater. 5, 1372 (1993).Google Scholar
3 Shin, H. K., Chi, K. M., Hampden-Smith, M. J., Kodas, T. T., Paffett, M. F., and Farr, J. D., Adv. Mater. 3, 246 (1991).Google Scholar
4 Chi, K. M., Shin, H. K., Hampden-Smith, M. J., Kodas, T. T., and Duesler, E. N., Polyhedron 10, 2293 (1991).Google Scholar
5 Reynolds, S. K., Smart, C. J., Baran, E. F., Baum, T. H., Larson, C. E., and Brock, P. J., Appl. Phys. Lett. 59, 2332 (1991).Google Scholar
6 Shin, H. K., Chi, K. M., Hampden-Smith, M. J., Kodas, T. T., Paffett, M. F., and Farr, J. D., Chem. Mater. 4, 788 (1992).Google Scholar
7 Norman, J. A. T., Muratore, B. A., Dyer, P. N., Roberts, D. A., and Hochberg, A. K., de Physique, J. IV, Colloque C2, 1,273(1991).Google Scholar
8 Norman, J. A. T., Muratore, B. A., Dyer, P. N., Roberts, D. A., Hochberg, A. K., and Dubois, L. H., presented at the E-MRS meeting (Symposium C: Chem. of Electron. Mater.), Strasbourg, France, June 2-5 (1992).Google Scholar
9 Jain, A., Farkas, J., Chi, K. M., Hampden-Smith, M. J., and Kodas, T. T., Appl. Phys. Lett. 61, 2662 (1992).Google Scholar
10 Jain, A., Kodas, T. T., Jairath, R., and Hampden-Smith, M. J., J. Vac. Sci. Tech. B 11, 2107 (1993).CrossRefGoogle Scholar
11 Schoer, J. K., Ross, C. B., Crooks, R. M., Corbitt, T. S., and Hampden-Smith, M. J., Langmuir 10, 615 (1994).Google Scholar
12 Ulman, A., An Introduction to Ultrathin Organic Films, (Academic Press, New York, 1991).Google Scholar
13 Calvert, J. M., J. Vac. Sci. Tech. B 11, 2155 (1993).CrossRefGoogle Scholar
14 Dressick, W. J., and Calvert, J. M., Jpn. J. Appl. Phys. 32, 5829 (1993).Google Scholar
15 Vargo, T. G., Gardella, J. A., Calvert, J. M., and Chen, M. C., Science 262, 1711 (1993).Google Scholar
16 Calvert, J. M., Pehrsson, P. E., Dulcey, C. S., and Peckerar, M. C., (Mat. Res. Soc. Symp. Proc. 260, Pittsburg, 1992), p. 905.Google Scholar
17 Dubois, L. H., and Zegarski, B. R., J. Electrochem. Soc. 139, 3295 (1992).Google Scholar
18 Davis, R. F., Ed., Diamond Films and Coatings. (Noyes Publications, Park Ridge, NJ, 1993).Google Scholar
19 Field, J. E., Ed., The Properties of Natural and Synthetic Diamond, (Academic Press, New York, 1992).Google Scholar
20 Moazed, K. L., Zeidler, J. R., and Taylor, M. J., J. Appl. Phys., 68, 2246 (1990).Google Scholar
21 Dressick, W. J., Dulcey, C. S., Georger, J. H., Calabrese, G. S., and Calvert, J. M., J. Electrochem. Soc. 141, 210 (1994).Google Scholar
22 Hsu, D. S. Y., Turner, N. H., Pierson, K. W., and Shamamian, V. A., J. Vac. Tech. B 10, 2251 (1992).Google Scholar
23 Hsu, D. S. Y., and Gray, H. F., Appl. Phys. Lett. 63, 159 (1993).Google Scholar
24 Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopv, (Perkin-ElmerCorp., Eden Prairie, MN, 1992).Google Scholar
25 Cohen, S. L., Liehr, M., and Kasi, S., Appl Phys. Lett. 60, 1585 (1992).Google Scholar
26 Gross, M. E., and Donnelly, V. M., in Advanced Metallization for ULSI Applications, edited by Rana, V. V. S., Joshi, R. V., and Ohdomari, I., (Materials Research Society, Pittsburgh, 1992), p. 375.Google Scholar
27 Weast, , Ed., Handbook of Chemistry and Physics, 65th ed., (CRC Press, Boca Raton, FL, 1984), p. F–120.Google Scholar