Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-21T19:57:46.276Z Has data issue: false hasContentIssue false

Second Harmonic Generation in Poled Polymers

Published online by Cambridge University Press:  10 February 2011

G. I. Stegeman
Affiliation:
Center for Research in Optics and Lasers (CREOL), Un. Central Florida, Orlando, FL 32826
M. JÄger
Affiliation:
Center for Research in Optics and Lasers (CREOL), Un. Central Florida, Orlando, FL 32826
A. Otomo
Affiliation:
Center for Research in Optics and Lasers (CREOL), Un. Central Florida, Orlando, FL 32826
W. Brinker
Affiliation:
Heinrich-Hertz-Institut für Nachrichtentechnik Berlin, Einsteinufer 37, D-10587 Berlin, Germany
S. Yilmaz
Affiliation:
Heinrich-Hertz-Institut für Nachrichtentechnik Berlin, Einsteinufer 37, D-10587 Berlin, Germany
S. Bauer
Affiliation:
Heinrich-Hertz-Institut für Nachrichtentechnik Berlin, Einsteinufer 37, D-10587 Berlin, Germany
W. H. G. Horsthuis
Affiliation:
Akzo Nobel Electronic Products, Arnhem, The Netherlands
G. R. MÖhlmann
Affiliation:
Akzo Nobel Electronic Products, Arnhem, The Netherlands
Get access

Abstract

The phenomenon of second harmonic generation has been studied from the earliest days of nonlinear optics.[l] To date the most impressive results in terms of conversion efficiency for as low an input power as possible have been obtained in channel waveguides made from inorganic materials.[2] However, when their second order nonlinearities (10s of pm/V) are compared with those of organic materials (10s → 100s pmn/V), it is clear that organic materials should eventually produce much better harmonic conversion efficiencies. [3]

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Franken, P. A., Hill, A.E., Peters, C.W. and Weinrich, G., Phys. Rev. Lett., 7, 118 (1961)Google Scholar
2for example Eger, D., Oron, M., Katz, M. and Zussman, A., Appl. Phys. Lett., 64, 3208 (1994).Google Scholar
3. Bosshard, C., Sutter, K., Schleser, R. and Gunter, P., J. Opt. Soc. Am., B 10, 867 (1993): C. Bosshard, G. KnÖpfle, P. Pretre, S. Follonier, C. Serbutoviez and P. Gunter, Opt. Engin., 34, 1951 (1995)Google Scholar
4. Otomo, A., Mittler-Neher, S., Bosshard, C., Stegeman, G.I., Horsthuis, W.H.G. and MÖhlmann, G.R., Appl. Phys. Lett., 63, 3405 (1993).Google Scholar
5. Norwood, R.A. and Khanarian, G., Elec. Lett. 26, 2105 (1990).Google Scholar
6. Otomo, A., Stegeman, G.I., Horsthuis, W. and MÖhlmann, G., ACS tutorial series #601, edited by Lindsay, G.A. and Singer, K.D., (American Chemical Society, Washington, 1994), 469483 Google Scholar
7. Otomo, A., Stegeman, G.I., Horsthuis, W.H.G. and Mohlmann, G.R., Appl. Phys. Lett., 65, 2389–91 (1994).Google Scholar
8. Brinker, W., Yilmaz, S., Wirges, W., Bauer, S. and Gerhard-Multhaupt, R., Optics Letters, 20, 816, (1995).Google Scholar
9. Khanarian, G., Norwood, R. and Landi, P., Proceedings of the SPIE Symposium on “Nonlinear Optical Properties of Organic Materials”, 1147, 129, (1989).Google Scholar