Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-26T09:42:18.396Z Has data issue: false hasContentIssue false

Schottky Diode Characteristics of CVD—Grown β —SiC Epitaxial Films on (n11) Silicon Substrates ( n= 1,3,4,5,6 ).

Published online by Cambridge University Press:  28 February 2011

Yoshihisa Fujii
Affiliation:
Central Research Laboratories, Engineering Center, Sharp Corporation, 2613—1 Ichinomoto, Tenri, Nara 632, Japan
Atsuko Ogura
Affiliation:
Central Research Laboratories, Engineering Center, Sharp Corporation, 2613—1 Ichinomoto, Tenri, Nara 632, Japan
Katsuki Furukawa
Affiliation:
Central Research Laboratories, Engineering Center, Sharp Corporation, 2613—1 Ichinomoto, Tenri, Nara 632, Japan
Mitsuhiro Shigeta
Affiliation:
Central Research Laboratories, Engineering Center, Sharp Corporation, 2613—1 Ichinomoto, Tenri, Nara 632, Japan
Akira Suzuki
Affiliation:
Central Research Laboratories, Engineering Center, Sharp Corporation, 2613—1 Ichinomoto, Tenri, Nara 632, Japan
Shigeo Nakajima
Affiliation:
Central Research Laboratories, Engineering Center, Sharp Corporation, 2613—1 Ichinomoto, Tenri, Nara 632, Japan
Get access

Abstract

Schottky barrier contacts have been made on CVD—grown β - SiC on Si substrates, and their C—V and I—V characteristics are measured. Dependence of the Schottky characteristics on Si substrate orientation ((n11),(n=1,3,4,5,6), and (100)) is examined. The Schottky diodes of the β-SiC films on Si (611), Si(411), and Si (111) show excellent characteristics compared with the conventional Schottky diodes using Si(100) substrates. That is, reverse leakage currents are small, ideality factors are close to unity, and barrier heights are larger.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nishino, S., Powell, J.A., and Will, H.A., Appl.Phys.Lett. 42, 460 (1983).Google Scholar
2 Suzuki, A., Furukawa, K., Higashigaki, Y., Harada, S., Nakajima, S., and Inoguchi, T., J.Cryst.Growth 70, 287 (1984)..Google Scholar
3 Yoshida, S., Sasaki, K., Sauma, E., Misawa, S., and Gonda, S., Appl.Phys.Lett. 46, 766 (1985).Google Scholar
4 Ioannou, D.E., Papanicolaou, N.A., and Nordquist, P.E. Jr., IEEE Trans.on Electron Devices ED–34, 1694 (1987).Google Scholar
5 Yoshida, S., Daimon, H., Yamanaka, M., Sakuma, E., Misawa, S., and Endo, K., J.Appl.Phys. 60, 2984 (1986).Google Scholar
6 Kong, H.S., Palmour, J.W., Glass, J.T., and Davis, R.F., Appl.Phys. Lett. 51, 442 (1987).Google Scholar
7 Furukawa, K., Uemoto, A., Fujii, Y., Shigeta, M., Suzuki, A., and Nakajima, S., Extended Abstracts of the 19th Conference on Solid State Devices and Materials, Tokyo,1987,pp231.Google Scholar
8 Shigeta, M., Fujii, Y., Uemoto, A., Furukawa, K., Suzuki, A., and Nakajima, S., to be published in Proceeding of the 4th International Conference on Metalorganic Vapor Phase Epitaxy,Hakone,Japan, 1988.Google Scholar
9 Suzuki, A., Uemoto, A., Shigeta, M., Furukawa, K., and Nakajima, S., Appl. Phys.Lett. 49, 450 (1986).Google Scholar
10 Yamanaka, M. Daimon, H., Sakuma, E., Misawa, S., and Yoshida, S., J.Appl. Phys. 61, 599 (1987).CrossRefGoogle Scholar
11 Zhou, P., Spencer, M.G., Harris, G.L., and Fekade, K., Appl.Phys.Lett. 50, 1384 (1987).CrossRefGoogle Scholar
12 Sze, S.M., Physics of Semiconductors Devices, 2nd ed.(Wiley, NY, 1981).Google Scholar